题目内容
8.已知:定义在R上的函数f(x),对于任意实数a,b满足f(a+b)=f(a)f(b),且f(1)≠0,当x>0时,f(x)>1.(1)求f(0)的值;
(2)证明f(x)在(-∞,+∞)上是增函数;
(3)求不等式f(x2+x)<$\frac{1}{f(2x-4)}$的解集.
分析 (1)令a=1,b=0,得出f(1)=f(1)•f(0 ),再结合当x>0时,f(x)>1.得出f(0)=1
(2)设x1<x2,由已知得出f(x2)=f(x1+(x2-x1))=f(x1)f(x2-x1)>f(x1),即可判断出函数f(x)在R上单调递增.
(3)由(2),不等式化为x2+x<-2x-4,解不等式即可.
解答 解:(1)令a=1,b=0则f(1)=f(1+0)=f(1)f(0),
∵f(1)≠0,
∴f(0)=1,
(2)证明:当x<0时-x>0
由f(x)f(-x)=f(x-x)=f(0)=1,f(-x)>0得f(x)>0,
∴对于任意实数x,f(x)>0,
设x1<x2则x2-x1>0,f(x2-x1)>1,
∵f(x2)=f(x1+(x2-x1))=f(x1)f(x2-x1)>f(x1),
∴函数y=f(x)在(-∞,+∞)上是增函数.
(3)∵$\frac{1}{f(2x-4)}$=$\frac{f(0)}{f(2x-4)}$=f(-2x+4)
∴f(x2+x)<$\frac{1}{f(2x-4)}$=f(-2x+4),
由(2)可得:x2+x<-2x+4
即x2+3x-4<0
解得-4<x<1,
∴原不等式的解集是(-4,1).
点评 本题考查抽象函数求函数值、单调性的判定、及单调性的应用,考查转化、牢牢把握所给的关系式,对式子中的字母准确灵活的赋值,变形构造是解决抽象函数问题常用的思路.
练习册系列答案
相关题目
16.复数$\frac{3i}{1-i}$(i是虚数单位)的虚部是( )
| A. | $\frac{3}{2}i$ | B. | $\frac{3}{2}$ | C. | $-\frac{3}{2}i$ | D. | $-\frac{3}{2}$ |
3.实数x,y满足条件$\left\{\begin{array}{l}{x+y-4≤0}\\{x-2y+2≥0}\\{x∈{N}^{*}}\\{y∈{N}^{*}}\end{array}\right.$,则z=x-y的最小值为( )
| A. | -2 | B. | -1 | C. | 0 | D. | 1 |
20.设x∈R,则x>π的一个必要不充分条件是( )
| A. | x>3 | B. | x<3 | C. | x>4 | D. | x<4 |
17.某企业有甲、乙两个研发小组,为了比较他们的研发水平,若某组成功研发一种新产品,则给该组记1分,否则记0分,现随机抽取这两个小组过去研发新产品15次的成绩如下:
(1)试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平;
(2)若该企业安排甲、乙两组各自研发一种新产品,试估算恰有一组研发成功的概率.
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
| 甲 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 |
| 乙 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 |
(2)若该企业安排甲、乙两组各自研发一种新产品,试估算恰有一组研发成功的概率.