题目内容
6.三棱柱ABC-A1B1C1的底面是直角三角形,侧棱垂直于底面,面积最大的侧面是正方形,且正方形的中心是该三棱柱的外接球的球心,若外接球的表面积为8π,则三棱柱ABC-A1B1C1的体积的最大值为( )| A. | 2 | B. | 3 | C. | $2\sqrt{2}$ | D. | 4 |
分析 根据球体体积计算球的半径,得出底面直角三角形的斜边长,从而得出底面直角边a,b的关系,利用基本不等式求得ab的最大值,代入棱柱的体积得出体积的最大值.
解答 解:设三棱柱底面直角三角形的直角边为a,b则棱柱的高h=$\sqrt{{a}^{2}+{b}^{2}}$,
设外接球的半径为r,则4πr2=8π,解得r=$\sqrt{2}$,
∵正方形的中心是该三棱柱的外接球的球心,∴$\sqrt{2}$h=2r=2$\sqrt{2}$.
∴h=2,
∴a2+b2=h2=4≥2ab,∴ab≤2.
∴三棱柱的体积V=Sh=$\frac{1}{2}$abh=ab≤2.
故选:A.
点评 本题考查了棱柱与外接球的关系,求出底面直角边的关系是关键,属于中档题.
练习册系列答案
相关题目
10.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+4x,(x<1)}\\{{e}^{x},(x≥1)}\end{array}\right.$,若函数g(x)=f(x)-kx恰有一个零点,则k的取值范围是( )
| A. | (e,+∞) | B. | (-∞,e) | C. | (-∞,$\frac{1}{e}$) | D. | [0,e) |