题目内容
【题目】已知函数
(
为自然对数的底数),
.
(1)当
时,求函数
的极小值;
(2)若当
时,关于
的方程
有且只有一个实数,求实数
的取值范围.
【答案】(1)0;(2)
.
【解析】
(1)求出导函数
,由导数确定单调性,然后得极值;
(2)设
,求出导数
,对
再求导,以确定
的单调性和正负,
是
的最小值,分类讨论,若
,易知结论成立,当
时,说明存在
,使得
,然后得
的单调性,确定
有两个零点,不满足题意.从而得出
的范围.
解:(1)当
时,
,
令
,则
列表如下:
|
| 1 |
|
| - | 0 | + |
| 单调递减 | 极小值 | 单调递增 |
所以
;
(2)设![]()
,
设
,
由
得,
在
单调递增,
即
在
单调递增,
,
①当
,即
时,
时,
,
在
单调递增,
又
,故当
时,关于
的方程
有且只有一个实数解.
②当
,即
时,由(1)可知
,
所以
,又
,
故
,当
时,
单调递减,又
,
故当
时,
,
在
内,关于
的方程
有一个实数解1,
又
时,
单调递增,
且
,令
,
,故
在
单调递增,又
,
∴当
时,
,∴
在
单调递增,故
,故
,
又
,由零点存在定理可知,
,
故在
内,关于
的方程
有一个实数解
,
又在
内,关于
的方程
有一个实数解1,
综上,
.
【题目】某大型歌手选秀活动,过程分为初赛、复赛和决赛.经初赛进入复赛的40名选手被平均分成甲、乙两个班,由组委会聘请两位导师各负责一个班进行声乐培训.下图是根据这40名选手参加复赛时获得的100名大众评审的支持票数制成的茎叶图.赛制规定:参加复赛的40名选手中,获得的支持票数不低于85票的可进入决赛,其中票数不低于95票的选手在决赛时拥有“优先挑战权”.
![]()
(1)从进入决赛的选手中随机抽出2名,X表示其中拥有“优先挑战权”的人数,求X的分布列和数学期望;
(2)请填写下面的
列联表,并判断能否在犯错误的概率不超过0.025的前提下认为进入决赛与选择的导师有关?
甲班 | 乙班 | 合计 | |
进入决赛 | |||
未进入决赛 | |||
合计 |
下面的临界值表仅供参考:
P( | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:
,其中
)