题目内容
2.已知a,b,c为△ABC的三个内角A,B,C的对边,向量$\overrightarrow{m}$=($\sqrt{3}$,-1),$\overrightarrow{n}$=(cosA,sinA),若$\overrightarrow{m}$⊥$\overrightarrow{n}$,则角A的值为( )| A. | $\frac{π}{3}$ | B. | $\frac{π}{2}$ | C. | $\frac{π}{6}$ | D. | $\frac{5π}{6}$ |
分析 $\overrightarrow{m}$⊥$\overrightarrow{n}$,可得$\overrightarrow{m}$•$\overrightarrow{n}$=0,解出即可得出.
解答 解:∵$\overrightarrow{m}$⊥$\overrightarrow{n}$,
∴$\overrightarrow{m}$•$\overrightarrow{n}$=$\sqrt{3}$cosA-sinA=0,cosA≠0,
化为tanA=$\sqrt{3}$,
∵A∈(0,π),
∴$A=\frac{π}{3}$.
故选:A.
点评 本题考查了向量垂直与数量积的关系、三角函数求值,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
14.已知函数f(x)=$\left\{\begin{array}{l}{-x+3a,x<0}\\{lo{g}_{a}(x+1),x≥0}\end{array}\right.$(a>0且a≠1)是R上的减函数,则a的取范围是( )
| A. | (0,1) | B. | [$\frac{1}{3},1$) | C. | (0,$\frac{1}{3}$] | D. | ($\frac{1}{3}$,1) |
11.已知f(x)是定义在R上的奇函数,对任意x∈R,都有f(x+4)=f(x),若f(-3)=2,则f(11)等于( )
| A. | 2012 | B. | 2 | C. | 2013 | D. | -2 |