题目内容
【题目】在四棱锥
中,
,
,
,
为棱
上一点(不包括端点),且满足
.
![]()
(1)求证:平面
平面
;
(2)
为
的中点,求二面角
的余弦值的大小.
【答案】(1)证明见解析;(2)
.
【解析】
(1)根据传递性,由
平面
,得到平面
平面![]()
(2)作
于点
,过点
作
,建立空间直角坐标系,求出各平面法向量后根据夹角公式求得二面角余弦值
(1)证明:因为
,
,所以
,
又
,
,所以
平面
,
又
平面
,所以平面
平面
.
(2) ![]()
如图,作
于点
,过点
作
,
则
,
,
两两垂直,故以
为坐标原点,
直线
,
,
分别为
轴、
轴、
轴建立如图所示空间直角坐标系.
设
,则
,
,
,所以
,
又
,所以
,
,
,
所以
,
,
,
,
.
因为
为
的中点,所以
.
,
,
令
为平面
的法向量,
则有
即![]()
不妨设
,则
.
易知平面
的一个法向量为
,
.
因为二角
为钝角,
所以二面角
的余弦值为
.
练习册系列答案
相关题目
【题目】小明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立):
场次 | 投篮次数 | 命中次数 |
主场1 | 22 | 12 |
主场2 | 15 | 12 |
主场3 | 12 | 8 |
主场4 | 23 | 8 |
主场5 | 24 | 20 |
场次 | 投篮次数 | 命中次数 |
客场1 | 18 | 8 |
客场2 | 13 | 12 |
客场3 | 21 | 7 |
客场4 | 18 | 15 |
客场5 | 25 | 12 |
(1)从上述比赛中随机选择一场,求小明在该场比赛中投篮命中率超过0.6的概率;
(2)从上述比赛中随机选择一个主场和一个客场,求小明的投篮命中率一场超过0.6,一场不超过0.6的概率.