题目内容
【题目】为促进全面健身运动,某地跑步团体对本团内的跑友每周的跑步千米数进行统计,随机抽取的100名跑友,分别统计他们一周跑步的千米数,并绘制了如图频率分布直方图.
![]()
(1)由频率分布直方图计算跑步千米数不小于70千米的人数;
(2)已知跑步千米数在
的人数是跑步千米数在
的
,跑步千米数在
的人数是跑步千米数在
的
,现在从跑步千米数在
的跑友中抽取3名代表发言,用
表示所选的3人中跑步千米数在
的人数,求
的分布列及数学期望.
【答案】(1)60人;(2)分布列见解析,
.
【解析】
(1)由图可得
(2)先求出跑步千米数在
的人数,再依题意求出其他区间的人数,可知跑步千米数在
的人数为2,跑步千米数在
的人数为5,列出分布列求解即可
(1)由频率分布直方图可得跑步千米数不小于70千米的人数为
.
(2)由频率分布直方图可知,跑步千米数在
的人数为
,
所以跑步千米数在
的人数为
.
因为跑步千米数在
的人数为
,
所以跑步千米数在
的人数为
,
则跑步千米数在
的人数为
.
所以
的所有可能取值为0,1,2,
则
;
;
.
所以
的分布列为
| 0 | 1 | 2 |
|
|
|
|
故数学期望
.
【题目】某同学解答一道三角函数题:“已知函数
,且
.
(Ⅰ)求
的值;
(Ⅱ)求函数
在区间
上的最大值及相应x的值.”
该同学解答过程如下:
解答:(Ⅰ)因为
,所以
.因为
,
所以
.
(Ⅱ)因为
,所以
.令
,则
.
画出函数
在
上的图象,
由图象可知,当
,即
时,函数
的最大值为
.
![]()
下表列出了某些数学知识:
任意角的概念 | 任意角的正弦、余弦、正切的定义 |
弧度制的概念 |
|
弧度与角度的互化 | 函数 |
三角函数的周期性 | 正弦函数、余弦函数在区间 |
同角三角函数的基本关系式 | 正切函数在区间 |
两角差的余弦公式 | 函数 |
两角差的正弦、正切公式 | 参数A, |
两角和的正弦、余弦、正切公式 | 二倍角的正弦、余弦、正切公式 |
请写出该同学在解答过程中用到了此表中的哪些数学知识.
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费
(单位:千元)对年销售量
(单位:
)和年利润
(单位:千元)的影响,对近8年的年宣传费
和年销售量
数据作了初步处理,得到下面的散点图及一些统计量的值.
|
|
|
|
|
|
|
46.6 | 56.3 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
表中
,
.
(1)根据散点图判断,
与
哪一个适宜作为年销售量
关于年宣传费
的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立
关于
的回归方程;
(3)已知这种产品的年利率
与
,
的关系为
.根据(Ⅱ)的结果回答下列问题:
(i)年宣传费
时,年销售量及年利润的预报值是多少?
(ii)年宣传费
为何值时,年利率的预报值最大?
附:对于一组数
,
,…,
,其回归直线
的斜率和截距的最小二乘估计分别为
,
.