题目内容

已知点O(0,0),A(1,2),B(4,5),C(1,-2),
OP
=
OA
AB

(1)当λ=2时,求
OP
的坐标;
(2)若
OP
OC
,且向量
OD
=(2+t,
2
t
),其中t∈(0,+∞),求
OP
OD
的最大值.
考点:平面向量数量积的运算
专题:平面向量及应用
分析:(1)将λ代入,利用向量相等得到所求;
(2)利用
OP
OC
,解得λ值,求出
OP
OD
的解析式,利用基本不等式求最大值.
解答: 解:(1)由已知
OA
=(1,2),
AB
=(3,3),λ=2,则
OP
=
OA
+2
AB
=(1,2)+2(3,3)=(7,8).所以
OP
=(7,8);
(2)若
OP
OC
OP
OC
=0
OP
=
OA
AB
=(1+3λ,2+3λ).
所以1+3λ-2(2+3λ)=0,即λ=-1,所以
OP
=(-2,-1),向量
OD
=(2+t,
2
t
),其中t∈(0,+∞),
所以
OP
OD
=-4-2t-
2
t
=-4-2(t+
1
t
)≤-4-4=-8,
当且仅当t=
1
t
=1时等号成立;
点评:本题考查了向量的坐标运算以及向量垂直的性质运用,还有利用基本不等式求最值,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网