题目内容
设△ABC的三边a,b,c所对的角分别为A,B,C,
=
(Ⅰ)求A的值;
(Ⅱ)求函数f(x)=2sin(x+
)cos(x+
)+2
cos2(x+
)-
的单调递增区间.
| a-c |
| b-c |
| sin(A+C) |
| sinA+sinC |
(Ⅰ)求A的值;
(Ⅱ)求函数f(x)=2sin(x+
| A |
| 2 |
| A |
| 2 |
| 3 |
| A |
| 2 |
| 3 |
(Ⅰ)△ABC中,由
=
利用正弦定理可得
=
,
化简可得 a2=b2+c2-bc.
再由余弦定理可得 cosA=
=
,∴A=
.
(Ⅱ)函数f(x)=2sin(x+
)cos(x+
)+2
cos2(x+
)-
=sin(2x+A)+
(cos2x+A)
=2sin(2x+A+
)=2sin(2x+
),
由 2kπ-
≤2x+
≤2kπ+
,k∈z,求得 kπ-
≤x≤kπ-
,k∈z,
故函数f(x)的单调增区间为[kπ-
,kπ-
],k∈z.
| a-c |
| b-c |
| sin(A+C) |
| sinA+sinC |
| a-c |
| b-c |
| b |
| a+c |
化简可得 a2=b2+c2-bc.
再由余弦定理可得 cosA=
| b2+c2-a2 |
| 2bc |
| 1 |
| 2 |
| π |
| 3 |
(Ⅱ)函数f(x)=2sin(x+
| A |
| 2 |
| A |
| 2 |
| 3 |
| A |
| 2 |
| 3 |
| 3 |
=2sin(2x+A+
| π |
| 3 |
| 2π |
| 3 |
由 2kπ-
| π |
| 2 |
| 2π |
| 3 |
| π |
| 2 |
| 7π |
| 12 |
| π |
| 12 |
故函数f(x)的单调增区间为[kπ-
| 7π |
| 12 |
| π |
| 12 |
练习册系列答案
相关题目