题目内容
14.在三棱锥P-ABC中,PA=PB=PC=6,侧棱PA与底面ABC所成的角为60°,则该三棱锥外接球的表面积为( )| A. | 12π | B. | 24π | C. | 36π | D. | 48π |
分析 过点P作PH⊥平面ABC于H,可得∠PAH是直线PA与底面ABC所成的角,得∠PAH=60°.由PA=PB=PC,得外接球心O必定在PH上,连接OA,可得△POA是底角等于30°的等腰三角形,从而得到外接球的半径R=OA,再用球的表面积公式可得该三棱锥外接球的表面积.
解答
解:过点P作PH⊥平面ABC于H,则AH是PA在平面ABC内的射影,
∴∠PAH是直线PA与底面ABC所成的角,得∠PAH=60°,
∴Rt△PAH中,AH=PAcos60°=3,PH=PAsin60°=3$\sqrt{3}$,
设三棱锥外接球的球心为O,
∵PA=PB=PC,∴P在平面ABC内的射影H是△ABC的外心
由此可得,外接球心O必定在PH上,连接OA、OB、OC
∵△POA中,OP=OA,
∴∠OAP=∠OPA=30°,可得PA=$\sqrt{3}$OA=6,
∴三棱锥外接球的半径R=OA=2$\sqrt{3}$,
该三棱锥外接球的表面积为S=4πR2=4π×12=48π.
故选:D.
点评 本题给出三棱锥的三条侧棱两两相等,在已知一条侧棱与底面所成角的情况下求外接球的表面积,着重考查了直线与平面所成角的定义、球内接多面体和球表面积的求法等知识,属于中档题.
练习册系列答案
相关题目
9.在等腰△ABC中,AB=AC,D是腰AC的中点,若sin∠CBD=$\frac{1}{4}$,则sin∠ABD=( )
| A. | $\frac{\sqrt{10}}{8}$ | B. | $\frac{\sqrt{6}}{4}$ | C. | $\frac{\sqrt{10}}{4}$ | D. | $\frac{\sqrt{6}}{8}$ |
6.若函数f(x)=x3-3x在区间[0,2]上有最大值m和最小值n,则m-n等于( )
| A. | -2 | B. | 0 | C. | 2 | D. | 4 |
3.若圆x2+y2+2x-6y+6=0有且仅有三个点到直线x+ay+1=0的距离为1,则实数a的值为( )
| A. | ±1 | B. | $±\frac{\sqrt{2}}{4}$ | C. | $±\sqrt{2}$ | D. | $±\frac{\sqrt{3}}{2}$ |