题目内容

已知P为△ABC内一点,且3
AP
+4
BP
+5
CP
=0.
延长AP交BC于点D,若
AB
=a,
AC
=b,用a、b表示向量
AP
AD
BP
=
AP
-
AB
=
AP
-a,
CP
=
AP
-
AC
=
AP
-b

3
AP
+4
BP
+5
CP
=0,
3
AP
+4(
AP
-a)+5(
AP
-b)
=0,
化简,得
AP
=
1
3
a+
5
12
b.
AD
=t
AP
(t∈R),
AD
=
1
3
ta+
5
12
tb.①
又设
BD
=k
BC
(k∈R),由
BC
=
AC
-
AB
=b-a,得
BD
=k(b-a).而
AD
=
AB
+
BD
=a+
BD

AD
=a+k(b-a)=(1-k)a+kb.②
由①②,得
1
3
t=1-k
5
12
t=k.
解得t=
4
3
.

代入①,有
AD
=
4
9
a+
5
9
b.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网