题目内容
设函数的图象在点
处的切线的斜率为,且函数为偶函数.若函数满足下列条件:
①;
②对一切实数,不等式恒成立.
(1)求函数的表达式;
(2)求证:.
若集合,则( )
A. B. C. D.
若函数f(x)=ax﹣1+2(其中a>0且a≠1)的图象经过定点P(m,n),则 m+n= .
下列命题中的说法正确的是
A.若向量,则存在唯一的实数使得;
B.命题“若,则”的否命题为“若,则”;
C.命题“,使得”的否定是:“,均有”;
D.“且”是“”的不充分也不必要条件;
如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,E为侧棱PA的中点.
(1)求证:PC //平面BDE;
(2)若PC⊥PA,PD=AD,求证:平面BDE⊥平面PAB.
已知集合,,若,则实数的所有可能取值的集合为( )
在某高校自主招生考试中,所有选报II类志愿的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为五个等级.某考场考生的两科考试成绩数据统计如下图所示,其中“数学与逻辑”科目的成绩为的考生有人.
(1)求该考场考生中“阅读与表达”科目中成绩为的人数;
(2)若等级分别对应分,分,分,分,分,求该考场考生“数学与逻辑”科目的平均分;
(3)已知在本考场参加测试的考生中,恰有两人的两科成绩均为.在至少一科成绩为的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为的概率.
已知全集,,若,求a的值.
(1)已知对任意,函数的值恒大于零,求的取值范围.
(2)已知对任意,函数的值恒大于零,求的取值范围.