题目内容

已知方程x2+4ax+3a+1=0(a为大于1的常数)的两根为tanα,tanβ,且α、β∈(-
π
2
π
2
),则tan
α+β
2
的值是______.
由方程x2+4ax+3a+1=0(a为大于1的常数)的两根为tanα,tanβ,
得到tanα+tanβ=-4a<0,tanαtanβ=3a+1>,
则tan(α+β)=
tanα+tanβ
1-tanαtanβ
=
-4a
1-(3a+1)
=
4
3
>0,tanα<0,tanβ<0,
又因为α、β∈(-
π
2
π
2
),得到α+β∈(-π,π),
所以α+β∈(-π,-
π
2
),则
α+β
2
∈(-
π
2
,-
π
4
),
而tan(α+β)=
2tan
α+β
2
1-tan2
α+β
2

所以
2tan
α+β
2
1-tan2
α+β
2
=
4
3
,即(2tan
α+β
2
-1)(tan
α+β
2
+2)=0,
解得tan
α+β
2
=
1
2
(不合题意,舍去),tan
α+β
2
=-2,
故答案为:-2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网