题目内容
19.定义在R上的可导函数f(x),其导函数为f′(x)满足f′(x)>2x恒成立,则不等式f(4-x)<f(x)-8x+16的解集为(2,+∞).分析 构造函数g(x)=f(x)-x2,根据函数的单调性问题转化为4-x>x,求出x的范围即可.
解答 解:令g(x)=f(x)-x2,
则g′(x)=f′(x)-2x>0,
g(x)在R递增,
由f(4-x)<f(x)-8x+16,
g(4-x)=f(4-x)-(4-x)2=f(4-x)+8x-x2-16,
∴f(4-x)=g(4-x)+x2+16-8x,g(x)+x2=f(x),
∴g(4-x)+x2+16-8x<g(x)+x2-8x+16
得g(4-x)<g(x),
故4-x<x,解得:x>2,
给答案为:(2,+∞).
点评 本题考查了函数的单调性问题,考查导数的应用,构造函数g(x)是解题的关键,本题是一道中档题.
练习册系列答案
相关题目
1.祖暅原理:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.现有一个圆柱和一个长方体,它们的底面积相等,高也相等,若长方体的底面周长为8,圆柱的体积为16π,根据祖暅原理,可得圆柱的高h的取值范围是( )
| A. | (0,π] | B. | (0,4π] | C. | [π,+∞) | D. | [4π,+∞) |
7.利用计算机在区间($\frac{1}{3}$,2)内产生随机数a,则不等式ln(3a-1)<0成立的概率是( )
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{5}$ |
8.下列说法错误的是( )
| A. | 命题“若a=0,则ab=0”的否命题是:“若a≠0,则ab≠0” | |
| B. | 如果命题“¬p”与命题“p∨q”都是真命题,则命题q一定是真命题 | |
| C. | 若命题:?x0∈R,${x_0}^2-{x_0}+1<0$,则¬p:?x∈R,x2-x+1≥0 | |
| D. | “$sinθ=\frac{1}{2}$”是“$θ=\frac{π}{6}$”的充分不必要条件 |