ÌâÄ¿ÄÚÈÝ
3£®ÔÚ¡÷ABCÖУ¬B£¨-2£¬0£©£¬C£¨2£¬0£©£¬A£¨x£¬y£©£¬¸ø³ö¡÷ABCÂú×ãÌõ¼þ£¬¾ÍÄܵõ½¶¯µãAµÄ¹ì¼£·½³ÌÏÂ±í¸ø³öÁËһЩÌõ¼þ¼°·½³Ì£º
| Ìõ¼þ | ·½³Ì |
| ¢Ù¡÷ABCÖܳ¤Îª10 | C1£ºy2=25 |
| ¢Ú¡÷ABCÃæ»ýΪ10 | C2£ºx2+y2=4£¨y¡Ù0£© |
| ¢Û¡÷ABCÖУ¬¡ÏA=90¡ã | C3£º$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1£¨y¡Ù0£© |
| A£® | C3£¬C1£¬C2 | B£® | C1£¬C2£¬C3 | C£® | C3£¬C2£¬C1 | D£® | C1£¬C3£¬C2 |
·ÖÎö ¢ÙÖпÉת»¯ÎªAµãµ½B¡¢CÁ½µã¾àÀëÖ®ºÍΪ³£Êý£¬·ûºÏÍÖÔ²µÄ¶¨Ò壬ÀûÓö¨Òå·¨Çó¹ì¼£·½³Ì£»¢ÚÖÐÀûÓÃÈý½ÇÐÎÃæ»ý¹«Ê½¿ÉÖªAµãµ½BC¾àÀëΪ³£Êý£¬¹ì¼£ÎªÁ½ÌõÖ±Ïߣ»¢ÛÖСÏA=90¡ã£¬¿ÉÓÃбÂÊ»òÏòÁ¿´¦Àí£®
½â´ð ½â£º¢Ù¡÷ABCµÄÖܳ¤Îª10£¬¼´AB+AC+BC=10£¬
¡ßBC=4£¬¡àAB+AC=6£¾BC£¬
¹Ê¶¯µãAµÄ¹ì¼£ÎªÍÖÔ²£¬ÓëC3¶ÔÓ¦£»
¢Ú¡÷ABCµÄÃæ»ýΪ10£¬¡à$\frac{1}{2}$BC•|y|=10£¬¼´|y|=5£¬ÓëC1¶ÔÓ¦£»
¢Û¡ß¡ÏA=90¡ã£¬¡à$\overrightarrow{AB}•\overrightarrow{AC}$=£¨-2-x£¬-y£©£¨2-x£¬-y£©=x2+y2-4=0£¬ÓëC2¶ÔÓ¦£®
¹ÊÑ¡£ºA£®
µãÆÀ ±¾Ì⿼²é¹ì¼£·½³ÌµÄÇ󷨣¬¿¼²éÖ±½Ó·¨¡¢¶¨Òå·¨Çó¹ì¼£·½³Ì£¬ÊÇ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
14£®ÒÑ֪ʵÊýx¡¢yÂú×ã$\left\{\begin{array}{l}x-y+2¡Ý0\\ x+y¡Ý0\\ 4x-y-1¡Ü0\end{array}\right.$£¬Ôòz=2x+yµÄ×î´óֵΪ£¨¡¡¡¡£©
| A£® | -1 | B£® | $\frac{6}{5}$ | C£® | 5 | D£® | 6 |
11£®ÒÑÖªm£¾1£¬x£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}x-y+4¡Ý0\\ mx-y+5-m¡Ü0\\ 0¡Üx¡Ü1\end{array}$£¬ÈôÄ¿±êº¯Êýz=ax+by£¨a£¾0£¬b£¾0£©µÄ×î´óֵΪ3£¬Ôò$\frac{1}{a}$+$\frac{2}{b}$£¨¡¡¡¡£©
| A£® | ÓÐ×îСֵ $\frac{{11+2\sqrt{10}}}{3}$ | B£® | ÓÐ×î´óÖµ$\frac{{11+2\sqrt{10}}}{3}$ | ||
| C£® | ÓÐ×îСֵ$\frac{{11-2\sqrt{10}}}{3}$ | D£® | ÓÐ×î´óÖµ$\frac{{11-2\sqrt{10}}}{3}$ |
15£®ÒÑÖªa=${¡Ò}_{0}^{1}$xdx£¬b=${¡Ò}_{0}^{1}$x2dx£¬c=${¡Ò}_{0}^{1}$$\sqrt{x}$dx£¬Ôòa£¬b£¬cµÄ´óС¹ØÏµÊÇ£¨¡¡¡¡£©
| A£® | a£¼b£¼c | B£® | a£¼c£¼b | C£® | b£¼a£¼c | D£® | c£¼a£¼b |
12£®µãP£¨0£¬1£©µ½Ë«ÇúÏß$\frac{y^2}{4}-{x^2}=1$½¥½üÏߵľàÀëÊÇ£¨¡¡¡¡£©
| A£® | $\sqrt{5}$ | B£® | $\frac{{\sqrt{5}}}{5}$ | C£® | $\frac{{2\sqrt{5}}}{5}$ | D£® | 5 |