题目内容

17.在△ABC中角A,B,C的对边分别是a,b,c,且$\frac{asinA+bsinB-csinC}{sinBsinC}$=$\frac{2\sqrt{3}}{3}$a,a=2$\sqrt{3}$,若b∈[1,3],则c的最小值为3.

分析 由已知及正弦定理可得:$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{ab}$=$\frac{2\sqrt{3}}{3}$sinC,结合余弦定理,可得3cosC=$\sqrt{3}$sinC,从而可求tanC,利用同角三角函数基本关系式可求cosC,从而可求c2=b2-2$\sqrt{3}$b-12=(b-$\sqrt{3}$)2+9,结合范围b∈[1,3],利用二次函数的图象和性质即可解得c的最小值.

解答 解:∵$\frac{asinA+bsinB-csinC}{sinBsinC}$=$\frac{2\sqrt{3}}{3}$a,
∴由正弦定理可得:$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{ab}$=$\frac{2\sqrt{3}}{3}$sinC,整理可得:a2+b2-c2=$\frac{2\sqrt{3}absinC}{3}$,
又∵由余弦定理可得:a2+b2-c2=2abcosC,
∴2abcosC=$\frac{2\sqrt{3}absinC}{3}$,整理可得:3cosC=$\sqrt{3}$sinC,
∴解得:tanC=$\sqrt{3}$,cosC=$\sqrt{\frac{1}{1+ta{n}^{2}C}}$=$\frac{1}{2}$,
∴c2=b2-2$\sqrt{3}$b-12=(b-$\sqrt{3}$)2+9,
∵b∈[1,3],
∴当b=$\sqrt{3}$时,c取最小值为3.
故答案为:3.

点评 本题主要考查了正弦定理,余弦定理,同角三角函数基本关系式,二次函数的图象和性质在解三角形中的应用,考查了转化思想和数形结合思想的应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网