题目内容

如图,已知在长方体ABCD—A1B1C1D1中,棱AA1=5,AB=12,直线B1C1和平面A1BCD1的距离为_____________.

解析:∵B1C1∥BC,且B1C1平面A1BCD1,BC平面A1BCD1,

∴B1C1∥平面A1BCD1.

从而点B1到平面A1BCD1的距离即为所求.

过点B1作B1E⊥A1B于E,

∵BC⊥平面A1ABB1,且B1E平面AA1B1B,

∴BC⊥B1E.

又BC∩A1B=B,

∴B1E⊥平面A1BCD1,

即线段B1E的长即为所求.

在Rt△A1B1B中,B1E=,

∴直线B1C1到平面A1BCD1的距离为.

答案:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网