题目内容
如图,在长方体ABCD—A1B1C1D1中,已知AB=AA1=a,BC=(1)求证:AD∥平面A1BC;
(2)求证:平面A1MC⊥平面A1BD1;
(3)求点A到平面A1MC的距离.
![]()
解法1:(1)证明如下:由已知AD∥BC,而BC在平面A1BC内,AD在平面A1BC外,所以AD∥平面A1BC.
(2)证明如下:连结BD,得△DAB∽△CDM,
∴∠ADB=∠DCM.由
=
,∠DAB=∠CDM.
又∠DCM+∠DMC=90°,
∴∠ADB+∠DMC=90°.故BD⊥CM,又BD是BD1在平面ABCD上的射影,
由三垂线定理可知BD1⊥CM.
同理可得BD1⊥A1M,
![]()
∴BD1⊥平面A1MC.又BD1
平面A1BD1,
∴平面A1MC⊥平面A1BD1.
(3)取BC的中点P,设O为A1C与BD1的交点,OC的中点Q,连结AP、PQ,由AP∥MC知点A到平面A1MC的距离等于点P到平面A1MC的距离,由P、Q分别是BC、OC的中点知PQ∥BO,PQ=
BO.又BO⊥平面A1MC,∴PQ⊥平面A1MC.而BO=a,∴PQ=
a,即点A到平面A1MC的距离为
a.
解法2:以D为原点,以射线DA、DC、DD1分别为x、y、z轴的正半轴建立空间直角坐标系,可知各点坐标分别为D(0,0,0),A(
a,0,0),B(
a,0,0),C(0,a,0),
M(
a,0,0),D1(0,0,a),A1(
a,0,a).
![]()
(1)由此可得
=(
a,0,0),
=(
a,-a,0),
所以
=
.故
∥
.而BC在平面A1BC内,AD在平面A1BC外,所以AD∥平面A1BC.
(2)
=(
a,0,a),
=(
,-a,0),
·
=0,故BD1⊥CM.同理可得BD1⊥A1M,∴BD1⊥平面A1MC.又BD1
平面A1BD1,∴平面A1MC⊥平面A1BD1.
(3)
=(
,0,0),
=(
a,0,-a)由(2)知
是平面A1MC的法向量.
∴点A到平面A1MC的距离为![]()
.