题目内容
求证:
(1)
=tanα-tanβ
(2)
+
+
+…+
=
.
(1)
| sin(α-β) |
| cosαcosβ |
(2)
| 1 |
| cos00cos10 |
| 1 |
| cos10cos20 |
| 1 |
| cos20cos30 |
| 1 |
| cos880cos890 |
| cos10 |
| sin210 |
分析:(1)利用两角和与差的三角函数化简等式的左边,即可证明等式;
(2)利用表达式的左侧,分子分母同乘sin1°,利用两角差的正弦函数展开分子,化简表达式求和即可证明结果.
(2)利用表达式的左侧,分子分母同乘sin1°,利用两角差的正弦函数展开分子,化简表达式求和即可证明结果.
解答:证明:(1)左=
=
=
-
=tanα-tanβ=右.
∴
=tanα-tanβ
∴等式成立.
(2)∵
=
=
=tan(n+1)°-tann°.
∴左=
+
+
+…+
=
(
+
+
+…+
)
=
(tan1°-tan0°+tan2°-tan1°+…+tan89°-tan88°)
=
•tan89°
=
•
=
=右.
∴
+
+
+…+
=
∴等式成立.
| sin(α-β) |
| cosαcosβ |
| sinαcosβ-cosαsinβ |
| cosαcosβ |
| sinαcosβ |
| cosαcosβ |
| cosαsinβ |
| cosαcosβ |
∴
| sin(α-β) |
| cosαcosβ |
∴等式成立.
(2)∵
| sin1° |
| cosn°cos(n+1)° |
| sin[(n+1)°-n°] |
| cosn°cos(n+1)° |
| sin(n+1)°cosn°-cos(n+1)°sinn° |
| cosn°cos(n+1)° |
∴左=
| 1 |
| cos0°cos1° |
| 1 |
| cos1°cos2° |
| 1 |
| cos2°cos3° |
| 1 |
| cos88°cos89° |
=
| 1 |
| sin1° |
| sin1° |
| cos0°cos1° |
| sin1° |
| cos1°cos2° |
| sin1° |
| cos2°cos3° |
| sin1° |
| cos88°cos89° |
=
| 1 |
| sin1° |
=
| 1 |
| sin1° |
=
| 1 |
| sin1° |
| sin89° |
| cos89° |
=
| cos1° |
| sin21° |
∴
| 1 |
| cos0°cos1° |
| 1 |
| cos1°cos2° |
| 1 |
| cos2°cos3° |
| 1 |
| cos88°cos89° |
| cos1° |
| sin21° |
∴等式成立.
点评:本题考查两角和与差的三角函数,同角三角函数的基本关系式的应用,三角恒等式的证明,解题要注意公式的灵活运用.
练习册系列答案
相关题目