题目内容

求证:
(1)
sin(α-β)
cosαcosβ
=tanα-tanβ

(2)
1
cos00cos10
+
1
cos10cos20
+
1
cos20cos30
+…+
1
cos880cos890
=
cos10
sin210
分析:(1)利用两角和与差的三角函数化简等式的左边,即可证明等式;
(2)利用表达式的左侧,分子分母同乘sin1°,利用两角差的正弦函数展开分子,化简表达式求和即可证明结果.
解答:证明:(1)左=
sin(α-β)
cosαcosβ
=
sinαcosβ-cosαsinβ
cosαcosβ
=
sinαcosβ
cosαcosβ
-
cosαsinβ
cosαcosβ
=tanα-tanβ=右.
sin(α-β)
cosαcosβ
=tanα-tanβ

∴等式成立.
(2)∵
sin1°
cosn°cos(n+1)°
=
sin[(n+1)°-n°]
cosn°cos(n+1)°
=
sin(n+1)°cosn°-cos(n+1)°sinn°
cosn°cos(n+1)°
=tan(n+1)°-tann°.
∴左=
1
cos0°cos1°
+
1
cos1°cos2°
+
1
cos2°cos3°
+…+
1
cos88°cos89°

=
1
sin1°
(
sin1°
cos0°cos1°
+
sin1°
cos1°cos2°
+
sin1°
cos2°cos3°
+…+
sin1°
cos88°cos89°
)

=
1
sin1°
(tan1°-tan0°+tan2°-tan1°+…+tan89°-tan88°)

=
1
sin1°
•tan89°

=
1
sin1°
sin89°
cos89°

=
cos1°
sin2
=右.
1
cos0°cos1°
+
1
cos1°cos2°
+
1
cos2°cos3°
+…+
1
cos88°cos89°
=
cos1°
sin2

∴等式成立.
点评:本题考查两角和与差的三角函数,同角三角函数的基本关系式的应用,三角恒等式的证明,解题要注意公式的灵活运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网