题目内容

9.a,b,c分别是△ABC内角A,B,C的对边,a+c=4,sinA(1+cosB)=(2-cosA)sinB,则△ABC面积的最大值为$\sqrt{3}$.

分析 由正弦定理,余弦定理化简已知整理可得:2b=a+c,利用基本不等式可求ac的最大值,进而利用三角形面积公式即可计算得解.

解答 解:∵sinA(1+cosB)=(2-cosA)sinB,
∴由正弦定理可得:a(1+cosB)=b(2-cosA),
由余弦定理可得:a(1+$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$)=b(2-$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$),整理可得:2b=a+c,
∵a+c=4,可得:b=2,
∴16=(a+c)2≥4ac,解得:ac≤4,(当且仅当a=c=b=2等号成立,此时B=$\frac{π}{3}$),
∴S△ABC=$\frac{1}{2}acsinB$≤$\frac{1}{2}$×4×$\frac{\sqrt{3}}{2}$=$\sqrt{3}$.
故答案为:$\sqrt{3}$.

点评 本题主要考查了正弦定理,余弦定理,基本不等式,三角形面积公式在解三角形中的综合应用,考查了转化思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网