题目内容
【题目】如图所示,四棱锥
的侧面
底面
,底面
是直角梯形,且
,
,
是
中点.
![]()
(1)求证:
平面
;
(2)若
,求直线
与平面
所成角的大小.
【答案】(1)证明见解析;(2)
.
【解析】试题分析:(1)取
的中点
,连结
,易得
,
,从而得
平面
,只需证得
即可;
(2)设点O,G分别为AD,BC的中点,连结
,则
,可证得
平面
,故
两两垂直,可以点O为原点,分别以
的方向为
轴的正方向,建立空间直角坐标系
,求出平面
的法向量
,利用
即可得解.
试题解析:
(1)证明:取
的中点
,连结
,如图所示.
因为
,所以
.
因为侧面
,
且
,
所以
平面
,又
平面
,所以
.
又因为
,所以
平面
.
因为点
是
中点,所以
,且
.
又因为
,且
,所以
,且
,
所以四边形
为平行四边形,所以
,所以
平面
.
![]()
(2)设点O,G分别为AD,BC的中点,连结
,则
,
因为
平面
,
平面
,
所以
,所以
.
因为
,由(Ⅰ)知, ![]()
又因为
,所以
,
所以![]()
所以
为正三角形,所以
,
因为
平面
,
平面
,所以
.
又因为
,所以
平面
.
故
两两垂直,可以点O为原点,分别以
的方向为
轴的正方向,
建立空间直角坐标系
,如图所示.
![]()
,
,
,
所以
,
,
,
设平面
的法向量
,
则
所以
取
,则
,
设
与平面
所成的角为
,则
,
因为
,所以
,所以
与平面
所成角的大小为
.
练习册系列答案
相关题目