ÌâÄ¿ÄÚÈÝ
ÈôÍÖÔ²E1£º
+
=1ºÍÍÖÔ²E2£º
+
=1Âú×ã
=
=m(m£¾0)£¬Ôò³ÆÕâÁ½¸öÍÖÔ²ÏàËÆ£¬mÊÇÏàËÆ±È£®
£¨¢ñ£©Çó¹ý£¨2£¬
)ÇÒÓëÍÖÔ²
+
=1ÏàËÆµÄÍÖÔ²µÄ·½³Ì£»
£¨¢ò£©Éè¹ýÔµãµÄÒ»ÌõÉäÏßl·Ö±ðÓ루¢ñ£©ÖеÄÁ½ÍÖÔ²½»ÓÚA¡¢BÁ½µã£¨µãAÔÚÏß¶ÎOBÉÏ£©£®
¢ÙÈôPÊÇÏß¶ÎABÉϵÄÒ»µã£¬Èô|OA|£¬|OP|£¬|OB|³ÉµÈ±ÈÊýÁУ¬ÇóPµãµÄ¹ì¼£·½³Ì£»
¢ÚÇó|OA|•|OB|µÄ×î´óÖµºÍ×îСֵ£®
| x2 | ||
|
| y2 | ||
|
| x2 | ||
|
| y2 | ||
|
| a2 |
| a1 |
| b2 |
| b1 |
£¨¢ñ£©Çó¹ý£¨2£¬
| 6 |
| x2 |
| 4 |
| y2 |
| 2 |
£¨¢ò£©Éè¹ýÔµãµÄÒ»ÌõÉäÏßl·Ö±ðÓ루¢ñ£©ÖеÄÁ½ÍÖÔ²½»ÓÚA¡¢BÁ½µã£¨µãAÔÚÏß¶ÎOBÉÏ£©£®
¢ÙÈôPÊÇÏß¶ÎABÉϵÄÒ»µã£¬Èô|OA|£¬|OP|£¬|OB|³ÉµÈ±ÈÊýÁУ¬ÇóPµãµÄ¹ì¼£·½³Ì£»
¢ÚÇó|OA|•|OB|µÄ×î´óÖµºÍ×îСֵ£®
·ÖÎö£º£¨¢ñ£©Éè³öÓëÍÖÔ²
+
=1ÏàËÆµÄÍÖÔ²µÄ·½³ÌΪ£º
+
=1£¬½áºÏÌâÄ¿Ìõ¼þ¿ÉÇóµÃa2=16£¬b2=8£»
£¨¢ò£©¢Ù¶Ô¹ýÔµãµÄÒ»ÌõÉäÏßlµÄбÂÊ·Ö´æÔÚÓë²»´æÔÚ½øÐÐÌÖÂÛ£¬²»´æÔÚʱ¿ÉÇóµÃµãPµÄ×ø±ê£¬´æÔÚʱÉè³öÖ±ÏßlµÄ·½³ÌΪ£ºy=kx£¬P£¨x£¬y£©£¬ÓÉA£¨x1£¬y1£©£¬B£¨x2£¬y2£©Ôò
£¬´Ó¶ø¿ÉµÃ
£¬ÓÚÊÇÓУº
|OA|=
£¬Í¬Àí|OB|=
£¬ÓÖµãPÔÚlÉÏ£¬Ôòk=
£¬´úÈë¼´¿ÉÇóµÃPµãµÄ¹ì¼£·½³Ì£»
¢ÚÓÉ¢Ù¿ÉÖª£¬µ±lµÄбÂʲ»´æÔÚʱ£¬|OA|•|OB|=4£¬µ±lµÄбÂÊ´æÔÚʱ£¬¿ÉÇóµÃ|OA|•|OB|=4+
£¬´Ó¶ø¿ÉÇóµÃ|OA|•|OB|µÄ×î´óÖµºÍ×îСֵ£®
| x2 |
| 4 |
| y2 |
| 2 |
| x2 | ||
|
| y2 | ||
|
£¨¢ò£©¢Ù¶Ô¹ýÔµãµÄÒ»ÌõÉäÏßlµÄбÂÊ·Ö´æÔÚÓë²»´æÔÚ½øÐÐÌÖÂÛ£¬²»´æÔÚʱ¿ÉÇóµÃµãPµÄ×ø±ê£¬´æÔÚʱÉè³öÖ±ÏßlµÄ·½³ÌΪ£ºy=kx£¬P£¨x£¬y£©£¬ÓÉA£¨x1£¬y1£©£¬B£¨x2£¬y2£©Ôò
|
|
|OA|=
2
| ||
|
4
| ||
|
| y |
| x |
¢ÚÓÉ¢Ù¿ÉÖª£¬µ±lµÄбÂʲ»´æÔÚʱ£¬|OA|•|OB|=4£¬µ±lµÄбÂÊ´æÔÚʱ£¬¿ÉÇóµÃ|OA|•|OB|=4+
| 4 |
| 1+2k2 |
½â´ð£º½â£º£¨¢ñ£©ÉèÓë
+
=1ÏàËÆµÄÍÖÔ²µÄ·½³Ì
+
=1£®
ÔòÓÐ
¡£¨3·Ö£©
½âµÃa2=16£¬b2=8£®
ËùÇó·½³ÌÊÇ
+
=1£®¡£¨4·Ö£©
£¨¢ò£© ¢Ùµ±ÉäÏßlµÄбÂʲ»´æÔÚʱA(0£¬¡À
)£¬B(0£¬¡À2
)£¬
ÉèµãP×ø±êP£¨0£¬y0£©£¬Ôòy02=4£¬y0=¡À2£®¼´P£¨0£¬¡À2£©£®¡£¨5·Ö£©
µ±ÉäÏßlµÄбÂÊ´æÔÚʱ£¬ÉèÆä·½³Ìy=kx£¬P£¨x£¬y£©
ÓÉA£¨x1£¬y1£©£¬B£¨x2£¬y2£©Ôò
µÃ
¡à|OA|=
ͬÀí|OB|=
¡£¨7·Ö£©
ÓÖµãPÔÚlÉÏ£¬Ôòk=
£¬ÇÒÓÉx2+y2=
=
=
£¬
¼´ËùÇó·½³ÌÊÇ
+
=1£®
Ó֡ߣ¨0£¬¡À2£©ÊʺϷ½³Ì£¬
¹ÊËùÇóÍÖÔ²µÄ·½³ÌÊÇ
+
=1£®¡£¨9·Ö£©
¢ÚÓÉ¢Ù¿ÉÖª£¬µ±lµÄбÂʲ»´æÔÚʱ£¬|OA|•|OB|=
•2
=4£¬µ±lµÄбÂÊ´æÔÚʱ£¬|OA|•|OB|=
=4+
£¬
¡à4£¼|OA|•|OB|¡Ü8£¬¡£¨11·Ö£©
×ÛÉÏ£¬|OA|•|OB|µÄ×î´óÖµÊÇ8£¬×îСֵÊÇ4£®¡£¨12·Ö£©
| x2 |
| 4 |
| y2 |
| 2 |
| x2 | ||
|
| y2 | ||
|
ÔòÓÐ
|
½âµÃa2=16£¬b2=8£®
ËùÇó·½³ÌÊÇ
| x2 |
| 16 |
| y2 |
| 8 |
£¨¢ò£© ¢Ùµ±ÉäÏßlµÄбÂʲ»´æÔÚʱA(0£¬¡À
| 2 |
| 2 |
ÉèµãP×ø±êP£¨0£¬y0£©£¬Ôòy02=4£¬y0=¡À2£®¼´P£¨0£¬¡À2£©£®¡£¨5·Ö£©
µ±ÉäÏßlµÄбÂÊ´æÔÚʱ£¬ÉèÆä·½³Ìy=kx£¬P£¨x£¬y£©
ÓÉA£¨x1£¬y1£©£¬B£¨x2£¬y2£©Ôò
|
µÃ
|
¡à|OA|=
2
| ||
|
4
| ||
|
ÓÖµãPÔÚlÉÏ£¬Ôòk=
| y |
| x |
| 8(1+k2) |
| 1+2k2 |
8(1+
| ||
1+2
|
| 8(x2+y2) |
| x2+2y2 |
¼´ËùÇó·½³ÌÊÇ
| x2 |
| 8 |
| y2 |
| 4 |
Ó֡ߣ¨0£¬¡À2£©ÊʺϷ½³Ì£¬
¹ÊËùÇóÍÖÔ²µÄ·½³ÌÊÇ
| x2 |
| 8 |
| y2 |
| 4 |
¢ÚÓÉ¢Ù¿ÉÖª£¬µ±lµÄбÂʲ»´æÔÚʱ£¬|OA|•|OB|=
| 2 |
| 2 |
| 8(1+b2) |
| 1+2k2 |
| 4 |
| 1+2k2 |
¡à4£¼|OA|•|OB|¡Ü8£¬¡£¨11·Ö£©
×ÛÉÏ£¬|OA|•|OB|µÄ×î´óÖµÊÇ8£¬×îСֵÊÇ4£®¡£¨12·Ö£©
µãÆÀ£º±¾Ì⿼²éÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌ⣬×ÅÖØ¿¼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬Ïû²Î·¨ÇóµãµÄ¹ì¼££¬ÄѵãÔÚÓÚÖ±ÏßÓëÍÖÔ²µÄ×ۺϷÖÎöÓëÓ¦Óã¬Ë¼Î¬Éî¿Ì£¬ÔËË㸴ÔÓ£¬ÄѶȴó£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿