题目内容
已知等比数列{an}的首项a1=1,公比q≠1,且a2,a1,a3成等差数列,则其前5项的和S5=( )
A.31 B.15 C.11 D.5
C
已知函数f(x)=ax+bln x+c(a,b,c是常数)在x=e处的切线方程为(e-1)x+ey-e=0,且f(1)=0.
(1)求常数a,b,c的值;
(2)若函数g(x)=x2+mf(x)(m∈R)在区间(1,3)内不是单调函数,求实数m的取值范围.
已知复数z1=(2-i)i,复数z2=a+3i(a∈R),若复数z2=kz1(k∈R),则a=( )
A. B.
C. D.
执行如图所示的程序框图,输出的S值是( )
A. B. C.0 D.-
请阅读下列材料:若两个正实数a1,a2满足a+a=1,那么a1+a2≤.证明:构造函数f(x)=(x-a1)2+(x-a2)2=2x2-2(a1+a2)x+1,因为对一切实数x,恒有f(x)≥0,所以Δ≤0,从而得4(a1+a2)2-8≤0,所以a1+a2≤.
根据上述证明方法,若n个正实数满足a+a+…+a=1时,你能得到的结论为________.(不必证明)
已知函数f(x)=则使函数g(x)=f(x)+x-m有零点的实数m的取值范围是( )
A.[0,1) B.(-∞,1)
C.(-∞,1]∪(2,+∞) D.(-∞,0]∪(1,+∞)
已知数列{an}的前n项和Sn=n-5an-85.
(1)求{an}的通项公式;
(2)令bn=,求数列的前n项和Tn.
已知m>0,n>0,若直线(m+1)x+(n+1)y-2=0与圆(x-1)2+(y-1)2=1相切,则m+n的取值范围是________.
在中,是三角形的三内角,是三内角对应的三边,已知.
(1)求角的大小;
(2) 若=,求中周长和面积的最大值