题目内容
一个四面体如图,若该四面体的正视图(主视图)、侧视图(左视图)和俯视图都是直角边长为1的等腰直角三角形,则它的体积 ( )
A. B. C. D.
在递增的等比数列中,已知,,且前项和为,则( )
(A) (B) (C) (D)
(坐标系与参数方程选做题)在直角坐标系中,曲线的方程是,的参数方程是(为参数),则与交点的直角坐标是 .
(本小题满分14分)设数列的前项和,.
(1)求的值;
(2)求数列的通项公式;
(3)证明:对一切正整数,有.
若变量、满足约束条件,则的最大值 .
是虚数单位,( )
已知集合,若对于任意,存在,使得成立,则称集合M是“垂直对点集”.给出下列四个集合:
①; ②;
③; ④.
其中是“垂直对点集”的序号是 .
(本小题满分14分)如图,多面体ABCDEF中,平面ADEF⊥平面ABCD,正方形ADEF的边长为2,直角梯形ABCD中,AB∥CD,AD⊥DC,AB=2,CD=4.
(Ⅰ)求证:BC⊥平面BDE;
(Ⅱ)试在平面CDE上确定点P,使点P到直线DC、DE的距离相等,且AP与平面BEF所成的角等于30°.
在直三棱柱中,AA1=AB=BC=3,AC=2, D是AC的中点.
(1)求证:B1C∥平面A1BD;
(2)求平面A1DB与平面DBB1夹角的余弦值.