题目内容
已知函数.
(1)当时,函数的图像在点处的切线方程;
(2)当时,解不等式;
(3)当时,对,直线的图像下方.求整数的最大值.
故在上是增函数
已知抛物线的顶点在原点,对称轴是 轴,抛物线上的点 到焦点的距离等于5,求抛物线的方程和 的值.(8分)
已知,,则=___________________.
已知双曲线C1:(a>0,b>0)的焦距是实轴长的2倍.若抛物线C2:(p>0)的焦点到双曲线C1的渐近线的距离为2,则抛物线C2的方程为( )
A.x2=y B.x2=y C.x2=8y D.x2=16y
在棱长为1的正方体ABCD-A1B1C1D1中,M、N分别是AC1、A1B1的中点.点在正方体的表面上运动,则总能使 与垂直的点所构成的轨迹的周长等于 .
一个数列的前四项为-1,,-,,则它的一个通项公式是________.
已知函数f(x)=ax2+bx(a≠0)的导函数f′(x)=-2x+7,数列{an}的前n项和为Sn,点Pn(n,Sn)(n∈N*)均在函数y=f(x)的图象上,求数列{an}的通项公式及Sn的最大值.
数列1,2,3,4,…的前n项和是 __________.