题目内容
【题目】在平面直角坐标系
中,曲线
的参数方程为
(
为参数).在以坐标原点为极点,
轴的正半轴为极轴的极坐标系中,直线
的极坐标方程为
.
(1)求曲线
的普通方程及直线
的直角坐标方程;
(2)求曲线
上的点到直线
的距离的最大值与最小值.
【答案】(1)
,
(2)最大值
,最小值![]()
【解析】
(1)由曲线
的参数方程
,得
两式平方相加求解,根据直线
的极坐标方程
,展开有
,再根据
求解.
(2)因为曲线C是一个半圆,利用数形结合,圆心到直线的距离减半径即为最小值,最大值点由图可知.
(1)因为曲线
的参数方程为![]()
所以![]()
两式平方相加得:![]()
因为直线
的极坐标方程为
.
所以![]()
所以![]()
即![]()
(2)如图所示:
![]()
圆心C到直线的距离为:![]()
所以圆上的点到直线的最小值为:![]()
则点M(2,0)到直线的距离为最大值:![]()
【题目】《中央广播电视总台2019主持人大赛》是中央人民广播电视总台成立后推出的第一个电视大赛,由撒贝宁担任主持人,康辉、董卿担任点评嘉宾,敬一丹、鲁健、朱迅、俞虹、李洪岩等17位担任专业评审.从2019年10月26日起,每周六20:00在中央电视台综合频道播出.某传媒大学为了解大学生对主持人大赛的关注情况,分别在大一和大二两个年级各随机抽取了100名大学生进行调查.下图是根据调查结果绘制的学生场均关注比赛的时间频率分布直方图和频数分布表,并将场均关注比赛的时间不低于80分钟的学生称为“赛迷”.
![]()
大二学生场均关注比赛时间的频数分布表
时间分组 | 频数 |
| 12 |
| 20 |
| 24 |
| 22 |
| 16 |
| 6 |
(1)将频率视为概率,估计哪个年级的大学生是“赛迷”的概率大,请说明理由;
(2)已知抽到的100名大一学生中有男生50名,其中10名为“赛迷”试完成下面的
列联表,并据此判断是否有
的把握认为“赛迷”与性别有关.
非“赛迷” | “赛迷” | 合计 | |
男 | |||
女 | |||
合计 |
附:
,其中
.
| 0.15 | 0.10 | 0.05 | 0.025 |
| 2.072 | 2.706 | 3.841 | 5.024 |
【题目】第七届世界军人运动会于2019年10月18日至27日(共10天)在武汉召开,人们通过手机、电视等方式关注运动会盛况.某调查网站从观看运动会的观众中随机选出200人,经统计这200人中通过传统的传媒方式电视端口观看的人数与通过新型的传媒方式
端口观看的人数之比为
.将这200人按年龄分组:第1组
,第2组
,第3组
,第4组
,第5组
.其中统计通过传统的传媒方式电视端口观看的观众得到的频率分布直方图如图所示.
![]()
(1)求
的值及通过传统的传媒方式电视端口观看的观众的平均年龄;
(2)把年龄在第1,2,3组的观众称为青少年组,年龄在第4,5组的观众称为中老年组,若选出的200人中通过新型的传媒方式
端口观看的中老年人有12人,请完成下面
列联表,则能否在犯错误的概率不超过0.1的前提下认为观看军人运动会的方式与年龄有关?
通过 | 通过电视端口观看军人运动会 | 合计 | |
青少年 | |||
中老年 | |||
合计 |
span>
附:
(其中
).
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |