题目内容
已知公差不为0的等差数列{an}的前n项和为Sn,若S5=25,且S1,S2,S4成等比数列.
(1)求数列{an}的通项公式;
(2)求证:对一切正整数n,有
+
+…+
<
.
(1)求数列{an}的通项公式;
(2)求证:对一切正整数n,有
| 1 |
| a1a2 |
| 1 |
| a2a3 |
| 1 |
| anan+1 |
| 1 |
| 2 |
考点:数列与不等式的综合,数列的求和
专题:等差数列与等比数列,不等式的解法及应用
分析:(1)设等差数列{an}的首项为a1,公差为d,由题意列方程组求得首项和公差,则数列{an}的通项公式可求;
(2)由(1)中求得的通项公式得到
=
=
(
-
),代入有
+
+…+
整理得答案.
(2)由(1)中求得的通项公式得到
| 1 |
| anan+1 |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| a1a2 |
| 1 |
| a2a3 |
| 1 |
| anan+1 |
解答:
(1)解:设等差数列{an}的首项为a1,公差为d(d≠0),
由S5=25,且S1,S2,S4成等比数列,得
,解得:
或
.
∵d≠0,
∴
,
则an=1+2(n-1)=2n-1;
(2)证明:∵an=2n-1,
∴
=
=
(
-
),
∴
+
+…+
=
[(1-
)+(
-
)+…+(
-
)]
=
(1-
)=
-
<
.
由S5=25,且S1,S2,S4成等比数列,得
|
|
|
∵d≠0,
∴
|
则an=1+2(n-1)=2n-1;
(2)证明:∵an=2n-1,
∴
| 1 |
| anan+1 |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴
| 1 |
| a1a2 |
| 1 |
| a2a3 |
| 1 |
| anan+1 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
=
| 1 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2(2n+1) |
| 1 |
| 2 |
点评:本题是数列与不等式综合题,考查了等差数列的通项公式,考查了裂项相消法求数列的和,训练了放缩法证明数列不等式,是中档题.
练习册系列答案
相关题目