题目内容
9.设a=log0.60.8,b=log1.20.9,c=1.10.8,则a、b、c由小到大的顺序是b<a<c.分析 由y=log0.6x是减函数,知1=log0.60.6>a=log0.60.8>log0.61=0;由y=log1.2x是增函数,知b=log1.20.9<log1.21=0;由y=1.1x是增函数,知c=1.10.8>1.10=1,由此能比较a、b、c的大小
解答 解:∵y=log0.6x是减函数,
∴1=log0.60.6>a=log0.60.8>log0.61=0;
∵y=log1.2x是增函数,
∴b=log1.20.9<log1.21=0;
∵y=1.1x是增函数,
∴c=1.10.8>1.10=1,
∴b<a<c.
故答案为:b<a<c.
点评 本题考查对数函数、指数函数的性质和应用,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关题目
19.直线x-2y+2=0和直线3x-y+7=0的夹角是( )
| A. | 30° | B. | 60° | C. | 45° | D. | 135° |
17.某种产品的广告费支出x(单位:百万元)与销售额y(单位:百万元)之间有如下对应数据:
(1)求y关于x的回归直线方程.
(2)并预测广告费支出700万元的销售额大约是多少万元?
(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n•\overline{{x}^{2}}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$•$\overline{x}$)
| x | 2 | 4 | 5 | 6 | 8 |
| y | 30 | 40 | 60 | 50 | 70 |
(2)并预测广告费支出700万元的销售额大约是多少万元?
(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n•\overline{{x}^{2}}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$•$\overline{x}$)