题目内容
用反证法证明命题:“已知为实数,则方程至少有一个实根”时,要做的假设是
(A)方程没有实根(B)方程至多有一个实根
(C)方程至多有两个实根(D)方程恰好有两个实根
设函数,其中,
(1)求函数的定义域D;(用区间表示)
(2)讨论在区间D上的单调性;
(3)若,求D上满足条件的的集合。
某企业有甲、乙两个研发小组,为了比较他们的研发水平,现随机抽取这两个小组往年
研发新产品的结果如下:
其中分别表示甲组研发成功和失败;分别表示乙组研发成功和失败.
(I)若某组成功研发一种新产品,则给改组记1分,否记0分,试计算甲、乙两组研
发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平;
(II)若该企业安排甲、乙两组各自研发一种新产品,试估算恰有一组研发成功的概率.
如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为,,此时气球的高是,则河流的宽度BC约等于 。(用四舍五入法将结果精确到个位。参考数据:,,,,)
已知椭圆C:()的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形。
(1)求椭圆C的标准方程;
(2)设F为椭圆C的左焦点,T为直线上任意一点,过F作TF的垂线交椭圆C于点P,Q。
(i)证明:OT平分线段PQ(其中O为坐标原点);
(ii)当最小时,求点T的坐标。
已知满足约束条件当目标函数在该约束条件下取到最小值时,的最小值为
(A)5(B)4(C)(D)2
(本题满分15分)已知函数的最大值为2,是集合中的任意两个元素,且的最小值为.
(1)求函数的解析式及其对称轴;
(2)若,求的值.
(本题满分15分)已知,是平面上的两个定点,动点满足.
(1)求动点的轨迹方程;
(2)已知圆方程为,过圆上任意一点作圆的切线,切线与(1)中的轨迹交于,两点,为坐标原点,设为的中点,求长度的取值范围.
(本题满分14分)已知函数
(1)求函数的单调区间;
(2)当时,过原点分别作曲线和的切线,已知两切线的斜率互为倒数,证明:;
(3)设,当时,求实数的取值范围.