题目内容
11.已知等比数列{an},满足an+1>an,a1+a4=9,a2•a3=8.(1)求数列{an}的通项公式;
(2)求数列{(2n-1)an}的前n项和Tn.
分析 (1)由已知求得a1,a4的值,进一步求得公比,代入等比数列的通项公式得答案;
(2)直接利用错位相减法求数列{(2n-1)an}的前n项和Tn.
解答 解:(1)在等比数列{an}中,
∵$\left\{{\begin{array}{l}{{a_1}+{a_4}=9}\\{{a_2}•{a_3}=8}\end{array}}\right.$,∴$\left\{{\begin{array}{l}{{a_1}+{a_4}=9}\\{{a_1}•{a_4}=8}\end{array}}\right.$,
解得:$\left\{{\begin{array}{l}{{a_1}=1}\\{{a_4}=8}\end{array}}\right.$或$\left\{{\begin{array}{l}{{a_1}=8}\\{{a_4}=1}\end{array}}\right.$(舍去),
∴${q^3}=\frac{a_4}{a_1}=8$,得q=2,
∴${a_n}={2^{n-1}}$;
(2)设${c_n}=(2n-1)•{2^{n-1}}$,
则Tn=c1+c2+c3+…+cn=1+3•2+5•22+…+(2n-1)•2n-1,①
$2{T_n}=1•2+3•{2^2}+…+(2n-3)•{2^{n-1}}+(2n-1)•{2^n}$,②
由①-②得:$-{T_n}=1+2•2+2•{2^2}+…+2•{2^{n-1}}-(2n-1)•{2^n}$
=1+22+23+…+2n-(2n-1)•2n
=2+22+23+…+2n-(2n-1)•2n-1
=$\frac{2(1-{2}^{n})}{1-2}-(2n-1)•{2}^{n}-1$,
∴${T_n}=3+(2n-3)•{2^n}$.
点评 本题考查等比数列的通项公式,训练了错位相减法求数列的和,是中档题.
| A. | 1 | B. | -1 | C. | $\frac{24}{25}$ | D. | -$\frac{4}{5}$ |
| A. | $\sqrt{10}$ | B. | $\frac{\sqrt{10}}{2}$ | C. | $\sqrt{5}$ | D. | $\frac{\sqrt{5}}{2}$ |