题目内容
tan
+cot
的值为( )
| 15π |
| 9 |
| 9π |
| 4 |
A、1+
| ||
B、1-
| ||
C、-1-
| ||
D、-1+
|
考点:运用诱导公式化简求值
专题:三角函数的求值
分析:原式中的角度变形后,利用诱导公式及特殊角的三角函数值计算即可得到结果.
解答:
解:原式=tan(2π-
)+cot(2π+
)=1-
.
故选:B.
| π |
| 3 |
| π |
| 4 |
| 3 |
故选:B.
点评:此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.
练习册系列答案
相关题目
已知函数y=f(x) 是定义在R上的减函数,函数y=f(x-1)的图象关于点(1,0)对称.若对任意的x,y∈R,不等式 f(x2+y-1)+f(-x2+2x-1≤0)恒成立,x2+y2的最小值是( )
| A、0 | ||||
B、
| ||||
C、
| ||||
| D、3 |
已知函数f(x)是偶函数,且f(x)在[0,+∞)是增函数,如果不等式f(a)≤f(1)恒成立,则实数a的取值范围是( )
| A、(-∞,1) |
| B、(-∞,1)∪[0,1] |
| C、(-∞,-1]∪[1,+∞) |
| D、[-1,1] |
如图所示的程序框图,它的输出结果是( )

| A、3 | B、4 | C、5 | D、6 |
函数f(x)=lnx+x2+5的零点个数为( )
| A、0 | B、1 | C、2 | D、3 |
设向量
=(2,3),
=(-1,2),若m
+
与
-2
平行,则实数m等于( )
| a |
| b |
| a |
| b |
| a |
| b |
| A、-2 | ||
| B、2 | ||
C、
| ||
D、-
|