题目内容
如果数列{an}中的项构成新数列{an+1-kan}是公比为l的等比数列,则它构成的数列{an+1-lan}是公比为k的等比数列.已知数列{an}满足:a1=
,a2=
,且an+1=
an+(
)n+1,根据所给结论,数列{an}的通项公式an=
[(
)n+1-(
)n+1]
[(
)n+1-(
)n+1].
| 3 |
| 5 |
| 31 |
| 100 |
| 1 |
| 10 |
| 1 |
| 2 |
| 5 |
| 2 |
| 1 |
| 2 |
| 1 |
| 10 |
| 5 |
| 2 |
| 1 |
| 2 |
| 1 |
| 10 |
分析:由an+1=
an+(
)n+1及n≥2时,an-
an-1=(
)n,两式相除可判断数列{an+1-
an}是公比为
的等比数列,由结论可知{an+1-
an}是公比为
的等比数列,从而可分别表示出an+1-
an和an+1-
an,两式相减即可求得答案.
| 1 |
| 10 |
| 1 |
| 2 |
| 1 |
| 10 |
| 1 |
| 2 |
| 1 |
| 10 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 10 |
| 1 |
| 10 |
| 1 |
| 2 |
解答:解:由an+1=
an+(
)n+1,得an+1-
an=(
)n+1,
则n≥2时,an-
an-1=(
)n,
∴
=
(n≥2),
∴数列{an+1-
an}是首项为a2-
a1=
-
=
,公比为
的等比数列,
∴an+1-
an=
×(
)n-1=(
)n+1①,
由所给结论知,{an+1-
an}是首项为a2-
a1=
-
=
,公比为
的等比数列,
∴an+1-
an=
×(
)n-1=(
)n+1②,
①-②,得
an=(
)n+1-(
)n+1,∴an=
[(
)n+1-(
)n+1],
故答案为:
[(
)n+1-(
)n+1].
| 1 |
| 10 |
| 1 |
| 2 |
| 1 |
| 10 |
| 1 |
| 2 |
则n≥2时,an-
| 1 |
| 10 |
| 1 |
| 2 |
∴
an+1-
| ||
an-
|
| 1 |
| 2 |
∴数列{an+1-
| 1 |
| 10 |
| 1 |
| 10 |
| 31 |
| 100 |
| 3 |
| 50 |
| 1 |
| 4 |
| 1 |
| 2 |
∴an+1-
| 1 |
| 10 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
由所给结论知,{an+1-
| 1 |
| 2 |
| 1 |
| 2 |
| 31 |
| 100 |
| 3 |
| 10 |
| 1 |
| 100 |
| 1 |
| 10 |
∴an+1-
| 1 |
| 2 |
| 1 |
| 100 |
| 1 |
| 10 |
| 1 |
| 10 |
①-②,得
| 2 |
| 5 |
| 1 |
| 2 |
| 1 |
| 10 |
| 5 |
| 2 |
| 1 |
| 2 |
| 1 |
| 10 |
故答案为:
| 5 |
| 2 |
| 1 |
| 2 |
| 1 |
| 10 |
点评:本题考查新定义、由数列递推式求数列通项,考查学生灵活运用知识分析解决问题的能力.
练习册系列答案
相关题目