题目内容
正项数列{an}的前n项和为Sn,且4Sn=(a+1)2,n∈N*.
(1)试求数列{an}的通项公式;
(2)设bn=
(n∈N*),求数列{bn}的前n项和Tn.
(1)试求数列{an}的通项公式;
(2)设bn=
| 1 |
| an•an+1 |
(1)∵4Sn=(a+1)2,n∈N*,∴Sn=
…①
当n=1时,a1=
,∴a1=1.
当n≥2时,Sn-1=
…②
①、②式相减得:
4an=(an+an-1)(an-an-1)+2(an-an-1),
∴2(an+an-1)=(an+an-1)(an-an-1),
∴an-an-1=2,
综上得an=2n-1.(6分)
(2)bn=
=
=
(
-
),
∴Tn=
(1-
+
-
+…+
-
)
=
.(12分)
| an2+2an+1 |
| 4 |
当n=1时,a1=
| a12+2a1+1 |
| 4 |
当n≥2时,Sn-1=
| an-12+2an-1+1 |
| 4 |
①、②式相减得:
4an=(an+an-1)(an-an-1)+2(an-an-1),
∴2(an+an-1)=(an+an-1)(an-an-1),
∴an-an-1=2,
综上得an=2n-1.(6分)
(2)bn=
| 1 |
| an•an+1 |
| 1 |
| (2n-1)(2n+1) |
=
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴Tn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
=
| n |
| 2n+1 |
练习册系列答案
相关题目