题目内容
11.设a=($\sqrt{3}$)1.4,b=3${\;}^{\frac{3}{2}}$,c=ln${\;}^{\frac{5}{2}}$,则a,b,c的大小关系是( )| A. | a>b>c | B. | b>a>c | C. | c>a>b | D. | b>c>a |
分析 把a,b化为同底数幂,然后利用指数式的性质比较大小,再由a>1而c<1得答案.
解答 解:∵a=($\sqrt{3}$)1.4=${3}^{\frac{7}{10}}$,b=3${\;}^{\frac{3}{2}}$=${3}^{\frac{15}{10}}$,∴a<b,
又c=ln${\;}^{\frac{5}{2}}$<lne=1,且a>1,
∴b>a>c.
故选:B.
点评 本题考查对数的大小比较,考查了指数函数与对数函数的性质,是基础题.
练习册系列答案
相关题目
1.某个服装店经营某种服装,在某周内获纯利y(元)与该周每天销售这种服装件数x之间的一组数据关系见表:
已知$\sum_{i=1}^{7}$x${\;}_{i}^{2}$=280,$\sum_{i=1}^{7}$y${\;}_{i}^{2}$=45309,$\sum_{i=1}^{7}$xiyi=3487.
(1)求$\overline{x}$,$\overline{y}$;
(2)已知纯利y与每天销售件数x之间线性相关,试求出其回归方程.
| x | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| y | 66 | 69 | 73 | 81 | 89 | 90 | 91 |
(1)求$\overline{x}$,$\overline{y}$;
(2)已知纯利y与每天销售件数x之间线性相关,试求出其回归方程.
2.在检验吸烟与患肺炎是否有关的一次统计中,根据2×2列联表中数据计算得x2≈6.234,则下列说法正确的是( )
| A. | 有99%的把握认为吸烟与患肺炎有关 | |
| B. | 有99%的把握认为吸烟与患肺炎无关 | |
| C. | 有95%的把握认为吸烟与患肺炎有关 | |
| D. | 有95%的把握认为吸烟与患肺炎无关 |
16.在(1+x)+(1+x)2+(1+x)3+…+(1+x)9的展开式中,x2的系数等于( )
| A. | 280 | B. | 300 | C. | 210 | D. | 120 |