题目内容
5.已知△ABC的三个顶点分别是A(2,2+2$\sqrt{2}$),B(0,2-2$\sqrt{2}$),C(4,2),试判断△ABC是否是直角三角形.分析 分别计算:|AB|2,|AC|2,|BC|2,即可判断出结论.
解答 解:|AB|2=(2-0)2+$(4\sqrt{2})^{2}$=36,|AC|2=$(-2)^{2}+(2\sqrt{2})^{2}$=12,|BC|2=${4}^{2}+(2\sqrt{2})^{2}$=24,
∴|AB|2=|AC|2+|BC|2,
∴C=Rt∠,
∴△ABC是以C为直角的直角三角形.
点评 本题考查了勾股定理的逆定理,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
15.某同学在研究性学习中,收集到某制药厂今年前5各月甲胶囊生产产量(单位:万盒)的数据如表所示.
若x,y线性相关,线性回归方程为$\widehat{y}$=0.7x+$\widehat{a}$,估计该制药厂6月份生产甲胶囊产量为( )
| x(月份) | 1 | 2 | 3 | 4 | 5 |
| y(万盒) | 5 | 5 | 6 | 6 | 8 |
| A. | 8.1万盒 | B. | 8.2万盒 | C. | 8.9万盒 | D. | 8.6万盒 |
13.抛物线C:y2=4x的焦点为F,斜率为k的直线l与抛物线C交于M,N两点,若线段MN的垂直平分线与x轴交点的横坐标为a(a>0),n=|MF|+|NF|,则2a-n等于( )
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
20.已知抛物线C1:y2=2px(p>0)过第四象限的点M,直线l:2x-$\sqrt{2}$y-2=0过抛物线C1的焦点F.若|MF|=3,则以M为圆心,且与直线l相切的圆的方程为( )
| A. | (x-2)2+(y+2$\sqrt{2}$)2=8 | B. | (x-2)2+(y+2$\sqrt{2}$)2=64 | C. | (x-2)2+(y+2$\sqrt{2}$)2=6 | D. | (x-2)2+(y+2$\sqrt{2}$)2=36 |