题目内容
8.以直角坐标系xOy中,直线l:y=x,圆C:$\left\{\begin{array}{l}{x=-1+cosφ}\\{y=-2+sinφ}\end{array}\right.$(φ为参数),以坐标原点为为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求直线l与圆C的极坐标方程;
(Ⅱ)设直线l与圆C的交点为M,N,求△CMN的面积.
分析 (Ⅰ)利用三种方程的互化方法,求直线l与圆C的极坐标方程;
(Ⅱ)设直线l与圆C的交点为M,N,求出圆心到直线的距离,|MN|,即可求△CMN的面积.
解答 解:(Ⅰ)将C的参数方程化为普通方程为(x+1)2+(y+2)2=1,极坐标方程为ρ2+2ρcosθ+4ρsinθ+4=0…(1分)
直线l:y=x的极坐标方程为$θ=\frac{π}{4}$(ρ∈R),…(3分)
(Ⅱ)圆心到直线的距离d=$\frac{|-1+2|}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,∴|MN|=2$\sqrt{1-\frac{1}{2}}$=$\sqrt{2}$,
∴△CMN的面积S=$\frac{1}{2}×\sqrt{2}×\frac{\sqrt{2}}{2}$=$\frac{1}{2}$.
点评 本题考查三种方程的互化,考查直线与圆的位置关系,属于中档题.
练习册系列答案
相关题目
18.
PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,它是形成雾霾的原因之一.PM2.5日均值越小,空气质量越好.2012年2月29日,国家环保部发布的《环境空气质量标准》见表:
针对日趋严重的雾霾情况,各地环保部门做了积极的治理.马鞍山市环保局从市区2015年11月~12月和2016年11月~12月的PM2.5检测数据中各随机抽取9天的数据来分析治理效果.样本数据如茎叶图所示(十位为茎,个位为叶)
(Ⅰ)分别求两年样本数据的中位数和平均值,并以此推断2016年11月~12月的空气质量是否比2015年同期有所提高?
(Ⅱ)在2015年的9个样本数据中随机抽取两天的数据,求这两天空气质量均超标的概率?
| PM2.5日均值k(微克) | 空气质量等级 |
| k≤35 | 一级 |
| 35<k≤75 | 二级 |
| k>75 | 超标 |
(Ⅰ)分别求两年样本数据的中位数和平均值,并以此推断2016年11月~12月的空气质量是否比2015年同期有所提高?
(Ⅱ)在2015年的9个样本数据中随机抽取两天的数据,求这两天空气质量均超标的概率?
19.在平面直角坐标系xoy中,双曲线${C_1}:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的渐近线与抛物线${C_2}:{y^2}=2px({p>0})$交于点O,A,B,若△OAB的垂心为C2的焦点,则C1的离心率为( )
| A. | $\frac{3}{2}$ | B. | $\sqrt{5}$ | C. | $\frac{{3\sqrt{5}}}{5}$ | D. | $\frac{{\sqrt{5}}}{2}$ |
16.将A,B,C,D这4名同学从左至右随机地排成一排,则“A与B相邻且A与C之间恰好有1名同学”的概率是( )
| A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{8}$ |
13.已知△ABC中,A=$\frac{π}{6}$,B=$\frac{π}{4}$,a=1,则b等于( )
| A. | 2 | B. | 1 | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |