题目内容
数列{an}满足递推式an=3an-1+3n-1(n≥2),其中a4=365,(Ⅰ)求a1,a2,a3;
(Ⅱ)若存在一个实数λ,使得{
| an+λ | 3n |
(Ⅲ)求数列{an}的前n项之和.
分析:(Ⅰ)因为数列{an}满足递推式an=3an-1+3n-1(n≥2),且a4=365,所以利用递推式,
由a4求a3,由a3求a2,由a2求a1,
(Ⅱ)由{
}为等差数列,以及等差数列的通项公式可以看成是n的一次函数,所以可设
=xn+y
解出an,再根据(Ⅰ)中所求a1,a2,a3的值解出x,y,λ即可.
(Ⅲ)根据(Ⅱ)中所求出的an,利用错位相减法求数列{an}的前n项之和.
由a4求a3,由a3求a2,由a2求a1,
(Ⅱ)由{
| an+λ |
| 3n |
| an+λ |
| 3n |
解出an,再根据(Ⅰ)中所求a1,a2,a3的值解出x,y,λ即可.
(Ⅲ)根据(Ⅱ)中所求出的an,利用错位相减法求数列{an}的前n项之和.
解答:解:(Ⅰ)由an=3an-1+3n-1,及a4=365知a4=3a3+34-1=365,则a3=95
同理求得a2=23,a1=5
(Ⅱ)∵{
}为一个等差数列,于是设
=xn+y
∴an=(xn+y)•3n-λ,又由a1=5,a2=23,a3=95
知
∴an=(n+
)•3n+
,而an=(n+
)•3n+
满足递推式
因此λ=-
.
(Ⅲ)∵an=(n+
)•3n+
先求bn=(n+
)•3n的前n项和
记Tn=(1+
)•31+(2+
)•32+…+(n+
)•3n
则3Tn=(1+
)•32+(2+
)•33+…+(n+
)•3n+1
由上两式相减
Tn-3Tn=(1+
)3+32+33+…+3n-(n+
)•3n+1
-2Tn=
+
-(n+
)•3n+1=
+
(3n+1-9)-(n+
)•3n+1
=-n•3n+1
Tn=
n•3n+1
因此{an}•前n项和为Tn+
=
•3n+1+
=
(3n+1+1).
同理求得a2=23,a1=5
(Ⅱ)∵{
| an+λ |
| 3n |
| an+λ |
| 3n |
∴an=(xn+y)•3n-λ,又由a1=5,a2=23,a3=95
知
|
∴an=(n+
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
因此λ=-
| 1 |
| 2 |
(Ⅲ)∵an=(n+
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
记Tn=(1+
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
则3Tn=(1+
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
由上两式相减
Tn-3Tn=(1+
| 1 |
| 2 |
| 1 |
| 2 |
-2Tn=
| 9 |
| 2 |
| 32-3n+1 |
| 1-3 |
| 1 |
| 2 |
| 9 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=-n•3n+1
Tn=
| 1 |
| 2 |
因此{an}•前n项和为Tn+
| n |
| 2 |
| n |
| 2 |
| n |
| 2 |
| n |
| 2 |
点评:本题考查了等差数列的通项公式,以及错位相见求数列的和,做题时要善于观察,找到规律.
练习册系列答案
相关题目