ÌâÄ¿ÄÚÈÝ
13£®É輯ºÏM={1£¬2£¬3£¬¡£¬n}£¨n¡Ý3£©£¬¼ÇMµÄº¬ÓÐÈý¸öÔªËØµÄ×Ó¼¯¸öÊýΪSn£¬Í¬Ê±½«Ã¿Ò»¸ö×Ó¼¯ÖеÄÈý¸öÔªËØÓÉСµ½´óÅÅÁУ¬È¡³öÖмäµÄÊý£¬ËùÓÐÕâЩÖмäµÄÊýµÄºÍ¼ÇΪTn£®£¨1£©Çó$\frac{{T}_{3}}{{S}_{3}}$£¬$\frac{{T}_{4}}{{S}_{4}}$£¬$\frac{{T}_{5}}{{S}_{5}}$£¬$\frac{{T}_{6}}{{S}_{6}}$µÄÖµ£»
£¨2£©²ÂÏë$\frac{{T}_{n}}{{S}_{n}}$µÄ±í´ïʽ£¬²¢Ö¤Ã÷Ö®£®
·ÖÎö £¨1£©¸ù¾ÝËù¸øµÄ¶¨ÒåÇó³ö¼´¿É£¬
£¨2£©²ÂÏë$\frac{{T}_{n}}{{S}_{n}}$=$\frac{n+1}{2}$£®ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷Ö®£®
½â´ð ½â£º£¨1£©µ±n=3ʱ£¬M={1£¬2£¬3£©£¬S3=1£¬T3=2£¬$\frac{{T}_{3}}{{S}_{3}}$=2£¬
µ±n=4ʱ£¬M={1£¬2£¬3£¬4£©£¬S4=4£¬T4=2+2+3+3=10£¬$\frac{{T}_{4}}{{S}_{4}}$=$\frac{5}{2}$£¬
$\frac{{T}_{5}}{{S}_{5}}$=3£¬$\frac{{T}_{6}}{{S}_{6}}$=$\frac{7}{2}$
£¨2£©²ÂÏë$\frac{{T}_{n}}{{S}_{n}}$=$\frac{n+1}{2}$£®
ÏÂÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷Ö®£®
Ö¤Ã÷£º¢Ùµ±n=3ʱ£¬ÓÉ£¨1£©Öª²ÂÏë³ÉÁ¢£»
¢Ú¼ÙÉèµ±n=k£¨k¡Ý3£©Ê±£¬²ÂÏë³ÉÁ¢£¬
¼´$\frac{{T}_{k}}{{S}_{k}}$=$\frac{k+1}{2}$£¬¶øSk=Ck3£¬ËùÒÔµÃTk=$\frac{k+1}{2}$Ck3£¬
Ôòµ±n=k+1ʱ£¬Ò×ÖªSk+1=Ck+13£¬
¶øµ±¼¯ºÏM´Ó{1£¬2£¬3£¬¡£¬k}±äΪ{1£¬2£¬3£¬¡£¬k£¬k+1}ʱ£¬Tk+1ÔÚTkµÄ»ù´¡ÉÏÔö¼ÓÁË1¸ö2£¬2¸ö3£¬3¸ö4£¬¡£¬ºÍ£¨k-1£©¸ök£¬
ËùÒÔTk+1=Tk+2¡Á1+3¡Á2+4¡Á3+¡+k£¨k-1£©£¬
=$\frac{k+1}{2}$Ck3+2£¨C22+C32+C42+¡+Ck2£©£¬
=$\frac{k+1}{2}$Ck3+2£¨C33+C32+C42+¡+Ck2£©£¬
=$\frac{k-2}{2}$Ck+13+2Ck+13£¬
=$\frac{k+2}{2}$Ck+13£¬
=$\frac{£¨k+1£©+1}{2}$Sk+1£¬
¼´$\frac{{T}_{k+1}}{{S}_{k+1}}$=$\frac{£¨k+1£©+1}{2}$£®
¼´ËùÒÔµ±n=k+1ʱ£¬²ÂÏëÒ²³ÉÁ¢£®
×ÛÉÏËùÊö£¬²ÂÏë³ÉÁ¢£®
µãÆÀ ±¾Ì⿼²éÁËÊýѧ¹éÄÉ·¨¡¢µÝÍÆ¹«Ê½¡¢ÊýÁеÄͨÏʽ£¬¿¼²éÁ˲ÂÏë¹éÄÉÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | EF¡ÎÆ½ÃæABCD | B£® | AC¡ÍBE | ||
| C£® | ÈýÀâ×¶A-BEFÌå»ýΪ¶¨Öµ | D£® | ¡÷BEFÓë¡÷AEFÃæ»ýÏàµÈ |
| A£® | ¡°p¡Åq¡±¼Ù | B£® | ¡°p¡Äq¡±Õæ | C£® | ¡°©Vq¡±Õæ | D£® | ¡°p¡Åq¡±Õæ |