题目内容
函数f(x)=2x-
的定义域为(0,1](a为实数).
(1)当a=-2时,求函数y=f(x)的最小值;
(2)若函数y=f(x)在定义域上是减函数,求a的取值范围;
(3)求函数y=f(x)在x∈(0,1)上的最大值及最小值,并求出函数取最值时x的值.
| a |
| x |
(1)当a=-2时,求函数y=f(x)的最小值;
(2)若函数y=f(x)在定义域上是减函数,求a的取值范围;
(3)求函数y=f(x)在x∈(0,1)上的最大值及最小值,并求出函数取最值时x的值.
(1)函数y=f(x)=2(x+
)在(0,1]上单调递减,
∴y=f(x)的最小值为f(1)=4;
(2)若函数y=f(x)在定义域上是减函数,
则任取x1,x2∈(0,1]且x1<x2,都有f(x1)>f(x2)成立,即(x1-x2)(2+
)>0,
只要a<-2x1x2即可,
由x1,x2∈(0,1],得-2x1x2∈(-2,0),所以a≤-2,
故a的取值范围是(-∞,-2];
(3)①当a≥0时,函数y=f(x)在(0,1]上单调递增,无最小值,
当x=1时取得最大值2-a;
②由(2)得当a≤-2时,函数y=f(x)在(0,1]上单调递减,无最大值,
当x=1时取得最小值2-a;
③当-2<a<0时,函数y=f(x)在(0,
]上单调递减,在[
,1]上单调递增,无最大值;
当x=
时取得最小值2
.
| 1 |
| x |
∴y=f(x)的最小值为f(1)=4;
(2)若函数y=f(x)在定义域上是减函数,
则任取x1,x2∈(0,1]且x1<x2,都有f(x1)>f(x2)成立,即(x1-x2)(2+
| a |
| x1x2 |
只要a<-2x1x2即可,
由x1,x2∈(0,1],得-2x1x2∈(-2,0),所以a≤-2,
故a的取值范围是(-∞,-2];
(3)①当a≥0时,函数y=f(x)在(0,1]上单调递增,无最小值,
当x=1时取得最大值2-a;
②由(2)得当a≤-2时,函数y=f(x)在(0,1]上单调递减,无最大值,
当x=1时取得最小值2-a;
③当-2<a<0时,函数y=f(x)在(0,
| ||
| 2 |
| ||
| 2 |
当x=
| ||
| 2 |
| -2a |
练习册系列答案
相关题目
设函数f(x)=
,则满足f(x)=4的x的值是( )
|
| A、2 | B、16 |
| C、2或16 | D、-2或16 |