题目内容
已知函数f(x)=
,数列{an}满足:a1=1,a n+1=f(
),
(1)求数列{an}的通项公式;
(2)令Tn=a1a2-a2a3+a3a4-a4a5+…+a2n-1a2n-a2na2n+1求Tn;
(3)设bn=
(n≥2),b1=3,Sn=b1+b2+b3+…+bn,若Sn<
对一切n∈N*成立,求最小的正整数m的值.
| 2x+3 |
| 3x |
| 1 |
| an |
(1)求数列{an}的通项公式;
(2)令Tn=a1a2-a2a3+a3a4-a4a5+…+a2n-1a2n-a2na2n+1求Tn;
(3)设bn=
| 1 |
| an-1an |
| k-2004 |
| 2 |
分析:(1)根据题意列出递推公式,再由等差数列的定义求通项公式an.
(2)根据式子的特点进行变形,然后由(1)知数列为等差数列求Tn.
(3)把an代入bn整理后再裂项,然后求数列{bn}的前n和sn,再用放缩法和不等式恒成立问题,求m的值.
(2)根据式子的特点进行变形,然后由(1)知数列为等差数列求Tn.
(3)把an代入bn整理后再裂项,然后求数列{bn}的前n和sn,再用放缩法和不等式恒成立问题,求m的值.
解答:解:(1)∵a n+1=f(
)=
=an+
∴an+1-an=
∴数列{an}是以
为公差,首项a1=1的等差数列
∴an=
n+
(2)Tn=a1a2-a2a3+a3a4-a4a5+…+a2n-1a2n-a2na2n+1
=a2(a1-a3)+a4(a3-a5)+…+a2n(a2n-1-a2n+1)
=-
(a2+a4+…+a2n)
=-
×
=-
(2n2+3n)
(3)当n≥2时,bn=
=
=
(
-
)
当n=1时,上式同样成立
∴sn=b1+b2+…+bn=
[(1-
)+(
-
)+…+(
-
)]=
(1-
)=
-
<
恒成立
∵Sn<
,即
(1-
)<
,
解得 m≥2011,
∴m最小=2011
| 1 |
| an |
| 2+3an |
| 3 |
| 2 |
| 3 |
∴an+1-an=
| 2 |
| 3 |
∴数列{an}是以
| 2 |
| 3 |
∴an=
| 2 |
| 3 |
| 1 |
| 3 |
(2)Tn=a1a2-a2a3+a3a4-a4a5+…+a2n-1a2n-a2na2n+1
=a2(a1-a3)+a4(a3-a5)+…+a2n(a2n-1-a2n+1)
=-
| 4 |
| 3 |
=-
| 4 |
| 3 |
n×(
| ||||||
| 2 |
| 4 |
| 9 |
(3)当n≥2时,bn=
| 1 |
| an-1an |
| 1 | ||||||||
(
|
| 9 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
当n=1时,上式同样成立
∴sn=b1+b2+…+bn=
| 9 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 9 |
| 2 |
| 1 |
| 2n+1 |
| 9 |
| 2 |
| 9 |
| 4n+2 |
| 9 |
| 2 |
∵Sn<
| k-2004 |
| 2 |
| 9 |
| 2 |
| 1 |
| 2n+1 |
| k-2004 |
| 2 |
解得 m≥2011,
∴m最小=2011
点评:本题的前两小题考查了等差数列的定义求和问题,最后一小题有一定的难度,用到了裂项相消法求和,处理不等式时用到了放缩法,使得不等式恒成立.
练习册系列答案
相关题目