题目内容

10.已知等差数列{an}的公差为2,且a1,a1+a2,2(a1+a4)成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=an+2n-1,求数列{bn}的前n项和Sn

分析 (I)由a1,a1+a2,2(a1+a4)成等比数列,可得$({a}_{1}+{a}_{2})^{2}$=2a1•(a1+a4),即$(2{a}_{1}+2)^{2}$=2a1(2a1+6),解得a1即可得出.
(II)bn=an+2n-1=(2n-1)+2n-1.再利用等差数列与等比数列的前n项和公式即可得出.

解答 解:(I)∵等差数列{an}的公差为2,
∴a2=a1+2,a4=a1+6,
∵a1,a1+a2,2(a1+a4)成等比数列,
∴$({a}_{1}+{a}_{2})^{2}$=2a1•(a1+a4),即$(2{a}_{1}+2)^{2}$=2a1(2a1+6),解得a1=1.
∴an=1+2(n-1)=2n-1.
(II)bn=an+2n-1=(2n-1)+2n-1
∴数列{bn}的前n项和Sn=$\frac{n(1+2n-1)}{2}$+$\frac{{2}^{n}-1}{2-1}$=n2+2n-1.

点评 本题考查了等差数列与等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网