题目内容
已知
+
=1,求证
+
=1.
| cos4α |
| cos2β |
| sin4α |
| sin2β |
| cos4β |
| cos2α |
| sin4β |
| sin2α |
分析:对所给的式子化为整式,再利用平方关系将cos4α表示成(1-sin2α)2,展开后再利用平方关系合并、化简,最后利用完全平方公式化简,求出关系式后,再由平方关系,代入所要证明的等式左边化简即可.
解答:解:由
+
=1得,
cos4αsin2β+sin4αcos2β=cos2βsin2β,
∴(1-sin2α)2sin2β+sin4αcos2β-cos2βsin2β=0
(1-2sin2α+sin4α)sin2β+sin4αcos2β-cos2βsin2β=0
sin2β-2sin2αsin2β+sin4αsin2β+sin4αcos2β-cos2βsin2β=0
sin2β(1-cos2β)-2sin2αsin2β+sin4α(sin2β+cos2β)=0,
即sin4β-2sin2αsin2β+sin4α=0,
则(sin2β-sin2α)2=0,
得sin2β=sin2α,
再由平方关系得,cos2β=cos2α,
代入
+
得cos2β+sin2β=1,
即
+
=1.
| cos4α |
| cos2β |
| sin4α |
| sin2β |
cos4αsin2β+sin4αcos2β=cos2βsin2β,
∴(1-sin2α)2sin2β+sin4αcos2β-cos2βsin2β=0
(1-2sin2α+sin4α)sin2β+sin4αcos2β-cos2βsin2β=0
sin2β-2sin2αsin2β+sin4αsin2β+sin4αcos2β-cos2βsin2β=0
sin2β(1-cos2β)-2sin2αsin2β+sin4α(sin2β+cos2β)=0,
即sin4β-2sin2αsin2β+sin4α=0,
则(sin2β-sin2α)2=0,
得sin2β=sin2α,
再由平方关系得,cos2β=cos2α,
代入
| cos4β |
| cos2α |
| sin4β |
| sin2α |
即
| cos4β |
| cos2α |
| sin4β |
| sin2α |
点评:本题是三角恒等变换的综合题,主要考查了同角的平方关系的应用,化简比较复杂,次数很高,注意降幂的方法,很多学生入手很难,难度较大,需要足够的耐心.
练习册系列答案
相关题目