题目内容
已知sinθ+cosθ=| 1 |
| 5 |
| π |
| 2 |
求(1)sinθ-cosθ
(2)sin3θ-cos3θ
(3)sin4θ+cos4θ
分析:(1)由 sinθ+cosθ=
,平方可得 sinθcosθ 的值,由sinθ-cosθ=
=
求出结果.
(2)由 立方差公式得 sin3θ-cos3θ=(sinθ-cosθ )(sin2θ+sinθcosθ+cos2θ ),运算得到结果.
(3)根据 sin4θ+cos4θ=(sin2θ+cos2θ)2-2 sin2θ•cos2θ,求出结果.
| 1 |
| 5 |
| (sinθ-cosθ)2 |
| 1-2sinθcosθ |
(2)由 立方差公式得 sin3θ-cos3θ=(sinθ-cosθ )(sin2θ+sinθcosθ+cos2θ ),运算得到结果.
(3)根据 sin4θ+cos4θ=(sin2θ+cos2θ)2-2 sin2θ•cos2θ,求出结果.
解答:解:(1)∵sinθ+cosθ=
,平方可得 sinθcosθ=-
,
∴sinθ-cosθ=
=
=
.
(2)sin3θ-cos3θ=(sinθ-cosθ )(sin2θ+sinθcosθ+cos2θ )=
(1+
)=
.
(3)sin4θ+cos4θ=(sin2θ+cos2θ)2-2 sin2θ•cos2θ=1-2(
)=
.
| 1 |
| 5 |
| 12 |
| 25 |
∴sinθ-cosθ=
| (sinθ-cosθ)2 |
| 1-2sinθcosθ |
| 7 |
| 5 |
(2)sin3θ-cos3θ=(sinθ-cosθ )(sin2θ+sinθcosθ+cos2θ )=
| 7 |
| 5 |
| 12 |
| 25 |
| 91 |
| 125 |
(3)sin4θ+cos4θ=(sin2θ+cos2θ)2-2 sin2θ•cos2θ=1-2(
| 144 |
| 625 |
| 337 |
| 625 |
点评:本题考查三角函数的恒等变换及化简求值,求出sinθcosθ=-
,是解题的关键.
| 12 |
| 25 |
练习册系列答案
相关题目