题目内容
设向量
,
,
满足
+
+
=
,且
•
=0,|
|=3,|
|=4,则|
|=
.
| a |
| b |
| c |
| a |
| b |
| c |
| 0 |
| a |
| b |
| a |
| c |
| b |
| 7 |
| 7 |
分析:根据得
•
=0=
•(-
-
)=-9-
•
,求出
•
的值,代入 |
|=|-
-
|=
,
运算求出结果.
| a |
| b |
| a |
| a |
| c |
| a |
| c |
| a |
| c |
| b |
| a |
| c |
|
运算求出结果.
解答:解:由题意可得
•
=0=
•(-
-
)=-9-
•
,∴
•
=-9.
∴|
|=|-
-
|=
=
=
=
.
故答案为:
.
| a |
| b |
| a |
| a |
| c |
| a |
| c |
| a |
| c |
∴|
| b |
| a |
| c |
(-
|
|
| 9+16-18 |
| 7 |
故答案为:
| 7 |
点评:本题考查向量的模的定义,求向量的模的方法,属于基础题.
练习册系列答案
相关题目