题目内容
16.下面几种推理是类比推理的是( )| A. | 两条直线平行,同旁内角互补,如果∠A和∠B是两条平行直线的同旁内角,则∠A+∠B=180° | |
| B. | 一切偶数都能被2整除,2100是偶数,所以2100能被2整除 | |
| C. | 由平面向量的运算性质,推测空间向量的运算性质 | |
| D. | 某校高二级有20班,1班有51位团员,2班有53位团员,3班有52位团员,由此可以推测各班都超过50位团员 |
分析 本题考查的知识点是类比推理的定义,根据归纳推理、类比推理和演绎推理的定义,对答案中的四个推理进行判断,即可得到答案.
解答 解:A中,两条直线平行,同旁内角互补,如果∠A和∠B是两条平行直线的同旁内角,则∠A+∠B=180°为演绎推理;
B中,一切偶数都能被2整除,.2100是偶数,所以2100能被2整除,为演绎推理;
C中,由平面向量的运算性质,推测空间向量的运算性质,为类比推理;
D中,某校高二级有20个班,1班有51位团员,2班有53位团员,3班有52位团员,由此可以推测各班都超过50位团员,为归纳推理;
故选:C.
点评 本题考查的知识点是类比推理,熟练掌握归纳推理、类比推理和演绎推理的定义,是解答本题的关键.
练习册系列答案
相关题目
6.海水受日月的引力,在一定的时候发生潮涨潮落,船只一般涨潮时进港卸货,落潮时出港航行,某船吃水深度(船底与水面距离)为4米,安全间隙(船底与海底距离)为1.5米,该船在2:00开始卸货,吃水深度以0.3米/时的速度减少,该港口某季节每天几个时刻的水深如下表所示,若选择y=Asin(ωx+φ)+K(A>0,ω>0)拟合该港口水深与时间的函数关系,则该船必须停止卸货驶离港口的时间大概控制在(要考虑船只驶出港口需要一定时间)( )
| 时刻 | 0:00 | 3:00 | 6:00 | 9:00 | 12:00 | 15:00 | 18:00 | 21:00 | 24:00 |
| 水深 | 5.0 | 7.5 | 5.0 | 2.5 | 5.0 | 7.5 | 5.0 | 2.5 | 5.0 |
| A. | 5:00至5:30 | B. | 5:30至6:00 | C. | 6:00至6:30 | D. | 6:30至7:00 |
6.函数y=$\frac{{x}^{2}-x+2}{x}$(x>0)的最小值为( )
| A. | $\sqrt{2}$ | B. | 2$\sqrt{2}$ | C. | 2$\sqrt{2}$-1 | D. | 2$\sqrt{2}$+1 |