题目内容
3.若双曲线$\frac{x^2}{4}-\frac{y^2}{3}=1$的左右焦点分别为F1,F2,P为双曲线上一点,PF1=3,则PF2=7.分析 求出双曲线的a=2,运用双曲线的定义,可得||PF1|-|PF2||=2a,解方程即可得到所求距离.
解答 解:双曲线$\frac{x^2}{4}-\frac{y^2}{3}=1$的a=2,
由双曲线的定义可得
||PF1|-|PF2||=2a=4,
即有|3-|PF2||=4,
解得|PF2|=7(-1舍去).
故答案为:7.
点评 本题考查双曲线的定义和方程,注意定义法的运用,考查运算能力,属于基础题.
练习册系列答案
相关题目
17.设函数f(x)=alnx+$\frac{1-a}{2}$x2-x(a∈R,a≠1),若?x0∈(1,+∞).使得f(x0)=$\frac{a}{a-1}$,则a的取值范围是( )
| A. | (-$\sqrt{2}$-1,$\sqrt{2}$-1) | B. | (-$\sqrt{2}$-1,1) | C. | (1,+∞) | D. | (-$\sqrt{2}$-1,$\sqrt{2}$-1)∪(1,+∞) |
8.顶点间距离是2,渐近线方程是y=±x的双曲线方程是( )
| A. | x2-y2=1 | B. | x2-y2=2 | ||
| C. | x2-y2=1或y2-x2=1 | D. | x2-y2=2或y2-x2=2 |
15.已知$sin(x-\frac{9π}{14})cos\frac{π}{7}+cos(x-\frac{9π}{14})sin\frac{π}{7}=\frac{1}{3}$,则cosx等于( )
| A. | $\frac{1}{3}$ | B. | $-\frac{1}{3}$ | C. | $\frac{{2\sqrt{2}}}{3}$ | D. | $±\frac{{2\sqrt{2}}}{3}$ |
13.若复数z满足z(2-i)=10+5i(i为虚数单位),则|z|=( )
| A. | 25 | B. | 10 | C. | 5 | D. | $\sqrt{5}$ |