题目内容
8.| A. | $\frac{π}{4}$ | B. | $\frac{5}{4}π$ | C. | π | D. | $\frac{3}{2}π$ |
分析 由已知中的三视力可得该几何体是一个圆柱,求出底面半径,和母线长,代入圆柱侧面积公式,可得答案.
解答 解:由已知中的三视力可得该几何体是一个圆柱,
∵几何体的正视图和侧视图都是边长为1的正方形,
∴圆柱的底面直径和母线长均为1,
故圆柱的底面周长为:π,
故圆柱的侧面面积为:π×1=π,
故选:C
点评 本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.
练习册系列答案
相关题目
11.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=4,且$\overrightarrow{a}•\overrightarrow{b}$=2$\sqrt{3}$,则$\overrightarrow{a}$与$\overrightarrow{b}$所成的角为( )
| A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{2}$ | D. | π |
3.从装有n+1个球(其中n个白球,1个黑球)的口袋中取出m个球(0<m≤n,m,n∈N),共有$C_{n+1}^m$种取法.在这$C_{n+1}^m$种取法中,可以分成两类:一类是取出的m个球全部为白球,一类是取出m-1个白球和1个黑球,共有$C_1^0•C_n^m+C_1^1•C_n^{m-1}=C_1^0•C_{n+1}^m$,即有等式:$C_n^m+C_n^{m-1}=C_{n+1}^m$成立.若(1≤k<m≤n,k,m,n∈N),根据上述思想化简下列式子$C_k^0•C_n^m+C_k^1•C_n^{m-1}+C_k^2•C_n^{m-2}+…+C_k^k•C_n^{m-k}$=的结果为( )
| A. | $C_{n+m}^m$ | B. | $C_{n+k}^k$ | C. | $C_{n+k}^m$ | D. | $C_{n+m}^k$ |
20.甲船在湖中B岛的正南A处,AB=3km,甲船以8km/h的速度向正北方向航行,同时乙船自B岛出发,以12km/h的速度向北偏东60°方向驶去,则行驶15分钟时,两船的距离是( )
| A. | $\sqrt{7}\;km$ | B. | $\sqrt{13}\;km$ | C. | $\sqrt{19}\;km$ | D. | $\sqrt{10-3\sqrt{3}}\;km$ |
17.
已知三棱锥的底面是边长为1的正三角形,其正视图与俯视图如图所示,则其侧视图的面积为( )
| A. | $\frac{\sqrt{6}}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{6}}{4}$ | D. | $\frac{\sqrt{2}}{4}$ |
18.已知四面体的三视图如图所示,则该几何体的体积为( )
| A. | 8 | B. | 12 | C. | 16 | D. | 24 |