题目内容

8.在△ABC中,角A,B,C所对边分别为a,b,c,且c=4$\sqrt{2}$,B=$\frac{π}{4}$,面积S=2,则b等于(  )
A.$\frac{\sqrt{113}}{2}$B.5C.$\sqrt{41}$D.25

分析 由已知利用三角形面积公式可求a的值,进而利用余弦定理可求b的值.

解答 解:∵c=4$\sqrt{2}$,B=$\frac{π}{4}$,面积S=$\frac{1}{2}$acsinB=$\frac{1}{2}×$a×4$\sqrt{2}$×$\frac{\sqrt{2}}{2}$=2,
∴解得:a=1,
∴由余弦定理可得:b=$\sqrt{{a}^{2}+{c}^{2}-2accosB}$=$\sqrt{1+32-2×1×4\sqrt{2}×\frac{\sqrt{2}}{2}}$=5.
故选:B.

点评 本题主要考查了三角形面积公式,余弦定理在解三角形中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网