题目内容
12分)a,b,c为不全相等的正数,求证aabc(a+b+c)
略
解析
已知函数.(1)求最大值?(2)若存在实数使成立,求实数的取值范围。
设f(x)=lnx+-1,证明:(1)当x>1时,f(x)< (x-1);(2)当1<x<3时,f(x)<.
选修4—5:不等式选讲(10分):(1)已知正数a、b、c,求证:++≥ (2)已知正数a、b、c,满足a+b+c=3,求证:++≥1
在三棱柱中,已知,,此三棱柱各个顶点都在一个球面上,则球的体积为( ).
以边长为1的正方形的一边所在所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于 ( )
(10分)设a,b均为正数,且a≠b,求证:a3+b3>a2b+ab2.
分10分)已知且,为大于1的自然数,求证:
(本小题满分7分)选修;不等式选讲已知为正实数,且,求的最小值及取得最小值时的值.