题目内容

已知|
OA
|=4,|
OB
|=6,
OC
=x
OA
+y
OB
,且x+2y=1,∠AOB是钝角,若f(t)=|
OA
-t
OB
|的最小值为2
3
,则|
OC
|的最小值是
 
分析:根据f(t)=|
OA
-t
OB
|的最小值为2
3
,作出向量
OA
-t
OB
,根据图形,可知当
OA
-t
OB
OB
时,f(t)=|
OA
-t
OB
|的最小值为2
3
,可以求出∠AOB,根据|
OC
|
2
=x2
OA
2
+y2
OB
2
+2xy
OA
• 
OB
,并把|
OA
|=4,|
OB
|=6代入,并利用二次函数求最值,即可求得结果.
解答:精英家教网解:f(t)=|
OA
-t
OB
|的最小值为2
3

∴根据图形知,当
OA
-t
OB
OB
时,f(t)=|
OA
-t
OB
|的最小值为2
3

∵|
OA
|=4,∴∠AOB=120°,
OC
=x
OA
+y
OB
,且x+2y=1,
|
OC
|
2
=x2
OA
2
+y2
OB
2
+2xy
OA
• 
OB

=16x2+36y2-24xy=16(1-2y)2+36y2-24(1-2y)y
=148y2-88y+16≥
108
37

∴|
OC
|的最小值是
6
111
37

故答案为
6
111
37
点评:此题属难题.考查向量和差的模的最值,利用作图求得f(t)=|
OA
-t
OB
|的最小值为2
3
,以及此时两向量的夹角是解题的关键,体现了数形结合的思想,同时考查了灵活应用知识分析解决问题的能力和运算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网