题目内容
用数学归纳法证明:
对于一切n∈N*,都有(12+1)+(22+2)+…+(n2+n)=
.
对于一切n∈N*,都有(12+1)+(22+2)+…+(n2+n)=
| n(n+1)(n+2) |
| 3 |
证明:(1)当n=1时,左边=12+1=2,右边=
=2,
所以当n=1时,命题成立; …(2分)
(2)设n=k时,命题成立,
即有(12+1)+(22+2)+…+(k2+k)=
…(4分)
则当n=k+1时,
左边=(12+1)+(22+2)+…+(k2+k)+[(k+1)2+(k+1)]…(5分)
=
+[(k+1)2+(k+1)]
=
…(8分)
=
=
=
…(10分)
所以当n=k+1时,命题成立.
综合(1)(2)得:对于一切n∈N*,
都有(12+1)+(22+2)+…+(n2+n)=
…(12分)
| 1×2×3 |
| 3 |
所以当n=1时,命题成立; …(2分)
(2)设n=k时,命题成立,
即有(12+1)+(22+2)+…+(k2+k)=
| k(k+1)(k+2) |
| 3 |
则当n=k+1时,
左边=(12+1)+(22+2)+…+(k2+k)+[(k+1)2+(k+1)]…(5分)
=
| k(k+1)(k+2) |
| 3 |
=
| (k+1)[k(k+2)+3(k+1)+3] |
| 3 |
=
| (k+1)(k2+5k+6) |
| 3 |
=
| (k+1)(k+2)(k+3) |
| 3 |
=
| (k+1)[(k+1)+1][(k+1)+2] |
| 3 |
所以当n=k+1时,命题成立.
综合(1)(2)得:对于一切n∈N*,
都有(12+1)+(22+2)+…+(n2+n)=
| n(n+1)(n+2) |
| 3 |
练习册系列答案
相关题目